An uncertainty relation in terms of generalized metric adjusted skew information and correlation measure

被引:3
作者
Fan, Ya-Jing [1 ,2 ]
Cao, Huai-Xin [1 ]
Meng, Hui-Xian [1 ]
Chen, Liang [1 ,3 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710062, Peoples R China
[2] Beifang Univ Nationalities, Sch Math & Informat Sci, Yinchuan 750021, Peoples R China
[3] Changji Coll, Dept Math, Changji 831100, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty relation; Generalized metric adjusted skew information; Generalized metric adjusted correlation measure; Wigner-Yanase skew information; Wigner-Yanase-Dyson skew information; ENTANGLEMENT;
D O I
10.1007/s11128-016-1419-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The uncertainty principle in quantum mechanics is a fundamental relation with different forms, including Heisenberg's uncertainty relation and Schrodinger's uncertainty relation. In this paper, we prove a Schrodinger-type uncertainty relation in terms of generalized metric adjusted skew information and correlation measure by using operator monotone functions, which reads, U-rho((g, f))(A)U-rho((g, f))(B) >= f(0)(2)l/k vertical bar Corr(rho)(s(g,f))(A, B)vertical bar(2) for some operator monotone functions f and g, all n-dimensional observables A, B and a non-singular density matrix rho. As applications, we derive some new uncertainty relations for Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information.
引用
收藏
页码:5089 / 5106
页数:18
相关论文
共 28 条
[1]   Toward quantum teleporting living objects [J].
Ai, Qing .
SCIENCE BULLETIN, 2016, 61 (02) :110-111
[2]   Sum uncertainty relations based on Wigner-Yanase skew information [J].
Chen, Bin ;
Fei, Shao-Ming ;
Long, Gui-Lu .
QUANTUM INFORMATION PROCESSING, 2016, 15 (06) :2639-2648
[3]   Uncertainty relations based on mutually unbiased measurements [J].
Chen, Bin ;
Fei, Shao-Ming .
QUANTUM INFORMATION PROCESSING, 2015, 14 (06) :2227-2238
[4]   Criticality, factorization and Wigner-Yanase skew information in quantum spin chains [J].
Cheng, W. W. ;
Li, J. X. ;
Shan, C. J. ;
Gong, L. Y. ;
Zhao, S. M. .
QUANTUM INFORMATION PROCESSING, 2015, 14 (07) :2535-2549
[5]   Improved entropic uncertainty relations and information exclusion relations [J].
Coles, Patrick J. ;
Piani, Marco .
PHYSICAL REVIEW A, 2014, 89 (02)
[6]   Schrodinger uncertainty relation, Wigner-Yanase-Dyson skew information and metric adjusted correlation measure [J].
Furuichi, Shigeru ;
Yanagi, Kenjiro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) :1147-1156
[7]   Schrodinger uncertainty relation with Wigner-Yanase skew information [J].
Furuichi, Shigeru .
PHYSICAL REVIEW A, 2010, 82 (03)
[8]   On a refinement of Heisenberg uncertainty relation by means of quantum Fisher information [J].
Gibilisco, P. ;
Isola, T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) :270-275
[9]   On a correspondence between regular and non-regular operator monotone functions [J].
Gibilisco, P. ;
Hansen, F. ;
Isola, T. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (8-9) :2225-2232
[10]   Uncertainty principle and quantum fisher information. II. [J].
Gibilisco, Paolo ;
Imparato, Daniele ;
Isola, Tommaso .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)