Top-down fabrication of horizontally-aligned gallium nitride nanowire arrays for sensor development

被引:17
作者
Liu, Guannan [1 ,2 ]
Wen, Baomei [2 ,3 ]
Xie, Ting [1 ,2 ]
Castillo, Audie [2 ,3 ]
Ha, Jong-Yong [1 ,2 ]
Sullivan, Nichole [3 ]
Debnath, Ratan [2 ,3 ]
Davydov, Albert [2 ]
Peckerar, Martin [1 ]
Motayed, Abhishek [1 ,2 ,3 ]
机构
[1] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[2] NIST, Mat Measurement Lab, Gaithersburg, MD 20899 USA
[3] N5 Sensors Inc, Rockville, MD 20850 USA
关键词
Gallium nitride; Nanowire; Top-down approach; Surface treatment; Sensors; GAN NANOWIRES;
D O I
10.1016/j.mee.2015.08.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper demonstrates a high-throughput fabrication method of gallium nitride (GaN) nanowire (NW) and sub-micron wire (SMW) arrays using a combination of projection lithography, plasma etching, and post-plasma wet etching techniques. Photoluminescence (PL), field emission scanning electron microscopy (FFSEM), and I-V measurements were used to characterize the GaN NW/SMW devices. These NWs/SMWs can be used to create highly-sensitive and selective conductometric chemical/bio-sensors. The length and width of the wires can be precisely customized. The length of the NW/SMW varied from 5 pm to. 5 mm and the width ranges from 100 nm to 500 nm. Such comprehensive control in the geometry of a wire is difficult to achieve with other fabrication methods. The post-plasma KOH wet etching greatly reduces the surface roughness of the GaN NW/SM as well as the performance of devices. Complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical system (MEMS) devices can be incorporated with GaN NW/SMW arrays on a single chip using this top-down fabrication method. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:58 / 63
页数:6
相关论文
共 24 条
[11]  
Lim W., 2008, APPL PHYS LETT, V93
[12]   A low cost micro-heater for aerosol generation applications [J].
Liu, Guannan ;
Lowy, Daniel A. ;
Kahrim, Amir ;
Wang, Chao ;
Dilli, Zeynep ;
Kratzmeier, Nick ;
Zhao, Wei ;
Peckerar, Martin .
MICROELECTRONIC ENGINEERING, 2014, 129 :46-52
[13]   Theory of GaN(10(1)over-bar-0) and (11(2)over-bar-0) surfaces [J].
Northrup, JE ;
Neugebauer, J .
PHYSICAL REVIEW B, 1996, 53 (16) :10477-10480
[14]   Gas Detection with Vertical InAs Nanowire Arrays [J].
Offermans, Peter ;
Crego-Calama, Mercedes ;
Brongersma, Sywert H. .
NANO LETTERS, 2010, 10 (07) :2412-2415
[15]   Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme [J].
Paramanik, Dipak ;
Motayed, Abhishek ;
Aluri, Geetha S. ;
Ha, Jong-Yoon ;
Krylyuk, Sergiy ;
Davydov, Albert V. ;
King, Matthew ;
McLaughlin, Sean ;
Gupta, Shalini ;
Cramer, Harlan .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2012, 30 (05)
[16]   Synthesis and characterization of semiconducting nanowires for gas sensing [J].
Sberveglieri, G. ;
Baratto, C. ;
Comini, E. ;
Faglia, G. ;
Ferroni, A. ;
Ponzoni, A. ;
Vomiero, A. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :208-213
[17]   Understanding and controlling heteroepitaxy with the kinetic Wulff plot: A case study with GaN [J].
Sun, Qian ;
Yerino, Christopher D. ;
Leung, Benjamin ;
Han, Jung ;
Coltrin, Michael E. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (05)
[18]   Top-down fabrication of semiconductor nanowires with alternating structures along their longitudinal and transverse axes [J].
Sun, YG ;
Graff, RA ;
Strano, MS ;
Rogers, JA .
SMALL, 2005, 1 (11) :1052-1057
[19]   Correlation of growth temperature, photoluminescence, and resistivity in GaN nanowires [J].
Talin, A. Alec ;
Wang, George T. ;
Lai, Elaine ;
Anderson, Richard J. .
APPLIED PHYSICS LETTERS, 2008, 92 (09)
[20]   Top-down processed silicon nanowire transistor arrays for biosensing [J].
Vu, Xuan Thang ;
Eschermann, Jan Felix ;
Stockmann, Regina ;
GhoshMoulick, Ranjita ;
Offenhaeusser, Andreas ;
Ingebrandt, Sven .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (03) :426-434