φ-FEM: A FINITE ELEMENT METHOD ON DOMAINS DEFINED BY LEVEL-SETS

被引:19
作者
Duprez, Michel [1 ,2 ]
Lozinski, Alexei [3 ]
机构
[1] Univ Paris 09, CEREMADE, F-75016 Paris, France
[2] Univ PSL, CNRS, UMR 7534, F-75016 Paris, France
[3] Univ Bourgogne Franche Comte, CNRS, UMR 6623, Lab Math Besancon, 16 Route Gray, F-25030 Besancon, France
关键词
finite element method; fictitious domain; level-set; BOUNDARY-CONDITIONS; DIRICHLET;
D O I
10.1137/19M1248947
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new fictitious domain finite element method, well suited for elliptic problems posed in a domain given by a level-set function without requiring a mesh fitting the boundary. To impose the Dirichlet boundary conditions, we search the approximation to the solution as a product of a finite element function with the given level-set function, which is also approximated by finite elements. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any nonstandard numerical integration (on cut mesh elements or on the actual boundary). We consider the Poisson equation discretized with piecewise polynomial Lagrange finite elements of any order and prove the optimal convergence of our method in the H-1- norm. Moreover, the discrete problem is proven to be well conditioned, i.e., the condition number of the associated finite element matrix is of the same order as that of a standard finite element method on a comparable conforming mesh. Numerical results confirm the optimal convergence in both H-1- and L-2 norms.
引用
收藏
页码:1008 / 1028
页数:21
相关论文
共 19 条
[1]  
Anders L., 2012, LECT NOTES COMPUT SC, V84, DOI [10.1007/978-3-642-23099-8, DOI 10.1007/978-3-642-23099-8]
[2]  
BRENNER SC, 2008, SPRINGER VERLAG, V3, P15
[3]   A CUT FINITE ELEMENT METHOD WITH BOUNDARY VALUE CORRECTION [J].
Burman, Erik ;
Hansbo, Peter ;
Larson, Mats G. .
MATHEMATICS OF COMPUTATION, 2018, 87 (310) :633-657
[4]   CutFEM: Discretizing geometry and partial differential equations [J].
Burman, Erik ;
Claus, Susanne ;
Hansbo, Peter ;
Larson, Mats G. ;
Massing, Andre .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) :472-501
[5]   FICTITIOUS DOMAIN METHODS USING CUT ELEMENTS: III. A STABILIZED NITSCHE METHOD FOR STOKES' PROBLEM [J].
Burman, Erik ;
Hansbo, Peter .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2014, 48 (03) :859-874
[6]   Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method [J].
Burman, Erik ;
Hansbo, Peter .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (04) :328-341
[7]   Ghost penalty [J].
Burman, Erik .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (21-22) :1217-1220
[8]   Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method [J].
Burman, Erik ;
Hansbo, Peter .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (41-44) :2680-2686
[9]  
Duprez M., FEM FINITE ELEMENT M
[10]  
EVANS LC, 1998, GRADUATE STUD MATH, V19