Two-dimensional Gauge Theories and Quantum Integrable Systems

被引:0
作者
Gerasimov, Anton A. [1 ]
Shatashvili, Samson L. [1 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117259, Russia
来源
FROM HODGE THEORY TO INTEGRABILITY AND TQFT: TT*- GEOMETRY | 2008年 / 78卷
基金
爱尔兰科学基金会;
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper the relation between 2d topological gauge theories and Bethe Ansatz equations is reviewed.(1) In addition we present some new results and clarifications. We hope the relations discussed here are particular examples of more general relations between quantum topological field theories in dimensions d <= 4 and quantum integrable systems. https://arxiv.org/pdf/0711.1472.pdf
引用
收藏
页码:239 / +
页数:3
相关论文
共 17 条
[1]  
Berezin F., 1964, VESTN MOSK U, V1, P21
[2]   A UNIFICATION OF KNIZHNIK-ZAMOLODCHIKOV AND DUNKL OPERATORS VIA AFFINE HECKE ALGEBRAS [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :411-431
[3]   DEGENERATE AFFINE HECKE ALGEBRAS AND YANGIANS [J].
DRINFELD, VG .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (01) :58-60
[5]   Periodic integrable systems with delta-potentials [J].
Emsiz, E ;
Opdam, EM ;
Stokman, JV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 264 (01) :191-225
[6]  
FADDEEV L, 1980, HAMILTONIAN METHODS
[7]  
Faddeev L.D., 1995, P SCH PHYS LES HOUCH, P149
[8]  
GERASIMOV A, ARXIVHEPTH0609024
[9]   Yang's system of particles and Hecke algebras [J].
Heckman, GJ ;
Opdam, EM .
ANNALS OF MATHEMATICS, 1997, 145 (01) :139-173
[10]  
HIKAMI K, 1998, J PHYS A, V31