A posteriori error analysis for finite element solutions of a frictional contact problem

被引:35
作者
Bostan, V [1 ]
Han, WM [1 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
variational inequality; frictional contact; finite element method; a posteriori error estimator; reliability; efficiency;
D O I
10.1016/j.cma.2005.06.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we derive and analyze a residual type a posteriori error estimator for finite element approximations of a frictional contact problem for linearized elastic materials. The reliability of the estimator is rigorously shown. The efficiency of the estimator is also studied. Results from several numerical examples are reported, illustrating the good performance of the estimator in adaptive solution of the frictional contact problem. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1252 / 1274
页数:23
相关论文
共 25 条
[1]  
Ainsworth M, 2000, PUR AP M-WI, DOI 10.1002/9781118032824
[2]   Adaptive numerical analysis in primal elastoplasticity with hardening [J].
Alberty, J ;
Carstensen, C ;
Zarrabi, D .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 171 (3-4) :175-204
[3]  
[Anonymous], INTERDISCIP APPL MAT
[4]  
[Anonymous], 2002, AMSIP STUDIES ADV MA
[5]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[6]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[7]  
Babuska I., 2001, NUMER MATH SCI COMP
[8]   A local regularization operator for triangular and quadrilateral finite elements [J].
Bernardi, C ;
Girault, V .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :1893-1916
[9]  
Buscaglia GC, 2001, INT J NUMER METH ENG, V50, P395, DOI 10.1002/1097-0207(20010120)50:2<395::AID-NME30>3.0.CO
[10]  
2-#