Entanglement and the quantum spatial continuum

被引:1
作者
Corbett, John V. [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
来源
75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS | 2011年 / 1384卷
关键词
Entanglement; quantum spatial continuum;
D O I
10.1063/1.3635841
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-locality of entangled systems provides more evidence that the spatial continuum of quantum particles is not classical. We assume that physical quantities take Dedekind real numbers in a topos for their numerical values. This means that the quantum spatial continuum is isomorphic to R-D(E-S (M))(3), where R-D(ES(M)) the sheaf of Dedekind real numbers in the topos Shv(E-S(M) of sheaves on the state space of the quantum system. In such a continuum, a single particle can have a quantum trajectory which passes through two classically separated slits and two particles in an entangled condition stay close to each other in their quantum space and hence Einstein locality is retained.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
[41]   Quantum Entanglement in Concept Combinations [J].
Aerts, Diederik ;
Sozzo, Sandro .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (10) :3587-3603
[42]   Entanglement in Quantum Process Algebra [J].
Wang, Yong .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (11) :3611-3626
[43]   Advances in quantum entanglement purification [J].
Pei-Shun Yan ;
Lan Zhou ;
Wei Zhong ;
Yu-Bo Sheng .
Science China Physics, Mechanics & Astronomy, 2023, 66
[44]   Quantum entanglement in noninertial frames [J].
Mann, R. B. .
PHYSICS ESSAYS, 2008, 21 (01) :26-32
[45]   Entanglement in the Quantum Ising Model [J].
Geoffrey R. Grimmett ;
Tobias J. Osborne ;
Petra F. Scudo .
Journal of Statistical Physics, 2008, 131 :305-339
[46]   Extended entanglement to quantum networks [J].
ul Haq, Sami ;
Saif, Farhan .
OPTIK, 2013, 124 (23) :5914-5917
[47]   Entanglement and decoherence in a quantum dimer [J].
Hou Xi-Wen ;
Hui Zi ;
Ding Rui-Min ;
Chen Xiao-Yang ;
Gao Yu .
CHINESE PHYSICS, 2006, 15 (11) :2510-2513
[48]   Quantum entanglement and a metaphysics of relations [J].
Esfeld, M .
STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2004, 35B (04) :601-617
[49]   On entanglement of states and quantum correlations [J].
Majewski, WA .
OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, CONFERENCE PROCEEDINGS, 2003, :287-297
[50]   Superposition, entanglement and quantum computation [J].
Forcer, TM ;
Hey, AJG ;
Ross, DA ;
Smith, PGR .
QUANTUM INFORMATION & COMPUTATION, 2002, 2 (02) :97-116