Entanglement and the quantum spatial continuum

被引:1
作者
Corbett, John V. [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
来源
75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS | 2011年 / 1384卷
关键词
Entanglement; quantum spatial continuum;
D O I
10.1063/1.3635841
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-locality of entangled systems provides more evidence that the spatial continuum of quantum particles is not classical. We assume that physical quantities take Dedekind real numbers in a topos for their numerical values. This means that the quantum spatial continuum is isomorphic to R-D(E-S (M))(3), where R-D(ES(M)) the sheaf of Dedekind real numbers in the topos Shv(E-S(M) of sheaves on the state space of the quantum system. In such a continuum, a single particle can have a quantum trajectory which passes through two classically separated slits and two particles in an entangled condition stay close to each other in their quantum space and hence Einstein locality is retained.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
  • [21] Quantum entanglement: a hylomorphic account
    Matteo Morganti
    Synthese, 2021, 198 : 2773 - 2793
  • [22] Quantum entanglement: a hylomorphic account
    Morganti, Matteo
    SYNTHESE, 2021, 198 (SUPPL 11) : 2773 - 2793
  • [23] Quantum Entanglement Processing with Atoms
    Ficek, Zbigniew
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2009, 3 (03): : 375 - 393
  • [24] On entanglement of states and quantum correlations
    Majewski, WA
    OPERATOR ALGEBRAS AND MATHEMATICAL PHYSICS, CONFERENCE PROCEEDINGS, 2003, : 287 - 297
  • [25] Quantum entanglement in circuit QED
    Milburn, G. J.
    Meaney, Charles
    SOLID-STATE QUANTUM COMPUTING, PROCEEDINGS, 2008, 1074 : 1 - 3
  • [26] Quantum entanglement as a quantifiable resource
    Wootters, WK
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 356 (1743): : 1717 - 1730
  • [27] Entanglement in the quantum ising model
    Grimmett, Geoffrey R.
    Osborne, Tobias J.
    Scudo, Petra F.
    JOURNAL OF STATISTICAL PHYSICS, 2008, 131 (02) : 305 - 339
  • [28] Superposition, entanglement and quantum computation
    Forcer, TM
    Hey, AJG
    Ross, DA
    Smith, PGR
    QUANTUM INFORMATION & COMPUTATION, 2002, 2 (02) : 97 - 116
  • [29] Entanglement and decoherence in a quantum dimer
    Hou Xi-Wen
    Hui Zi
    Ding Rui-Min
    Chen Xiao-Yang
    Gao Yu
    CHINESE PHYSICS, 2006, 15 (11): : 2510 - 2513
  • [30] Quantum entanglement and a metaphysics of relations
    Esfeld, M
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2004, 35B (04): : 601 - 617