Entanglement and the quantum spatial continuum

被引:1
作者
Corbett, John V. [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
来源
75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS | 2011年 / 1384卷
关键词
Entanglement; quantum spatial continuum;
D O I
10.1063/1.3635841
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-locality of entangled systems provides more evidence that the spatial continuum of quantum particles is not classical. We assume that physical quantities take Dedekind real numbers in a topos for their numerical values. This means that the quantum spatial continuum is isomorphic to R-D(E-S (M))(3), where R-D(ES(M)) the sheaf of Dedekind real numbers in the topos Shv(E-S(M) of sheaves on the state space of the quantum system. In such a continuum, a single particle can have a quantum trajectory which passes through two classically separated slits and two particles in an entangled condition stay close to each other in their quantum space and hence Einstein locality is retained.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
[21]   Entanglement enhanced quantum sensing [J].
Wieczorek, W. ;
Krischek, R. ;
Kiesel, N. ;
Schmid, Ch. ;
Weinfurter, H. .
QUANTUM SENSING AND NANOPHOTONIC DEVICES VII, 2010, 7608
[22]   Noise and entanglement in quantum conductors [J].
Lesovik, G. B. ;
Lebedev, A. V. .
ADVANCES IN THEORETICAL PHYSICS, 2009, 1134 :120-+
[23]   Classical complexity and quantum entanglement [J].
Gurvits, L .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (03) :448-484
[24]   Quantum Entanglement Processing with Atoms [J].
Ficek, Zbigniew .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2009, 3 (03) :375-393
[25]   Quantum Entanglement and Encoding Algorithm [J].
Cesarino Bertini ;
Roberto Leporini ;
Sergio Moriani .
International Journal of Theoretical Physics, 62
[26]   Quantum entanglement: a hylomorphic account [J].
Morganti, Matteo .
SYNTHESE, 2021, 198 (SUPPL 11) :2773-2793
[27]   Quantum entanglement: a hylomorphic account [J].
Matteo Morganti .
Synthese, 2021, 198 :2773-2793
[28]   Advances in quantum entanglement purification [J].
Yan, Pei-Shun ;
Zhou, Lan ;
Zhong, Wei ;
Sheng, Yu-Bo .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (05)
[29]   Quantum magnetism, nanomagnets and entanglement [J].
Haas, Stephan .
LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XII, 2008, 1014 :3-33
[30]   Quantum Entanglement in Trimer Clusters [J].
Fel'dman, E. B. ;
Kuznetsova, E., I .
INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2018, 2019, 11022