Entanglement and the quantum spatial continuum

被引:1
|
作者
Corbett, John V. [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
来源
75 YEARS OF QUANTUM ENTANGLEMENT: FOUNDATIONS AND INFORMATION THEORETIC APPLICATIONS | 2011年 / 1384卷
关键词
Entanglement; quantum spatial continuum;
D O I
10.1063/1.3635841
中图分类号
O59 [应用物理学];
学科分类号
摘要
The non-locality of entangled systems provides more evidence that the spatial continuum of quantum particles is not classical. We assume that physical quantities take Dedekind real numbers in a topos for their numerical values. This means that the quantum spatial continuum is isomorphic to R-D(E-S (M))(3), where R-D(ES(M)) the sheaf of Dedekind real numbers in the topos Shv(E-S(M) of sheaves on the state space of the quantum system. In such a continuum, a single particle can have a quantum trajectory which passes through two classically separated slits and two particles in an entangled condition stay close to each other in their quantum space and hence Einstein locality is retained.
引用
收藏
页码:34 / 41
页数:8
相关论文
共 50 条
  • [1] Quantum control and quantum entanglement
    Ahn, C
    Wiseman, HM
    Milburn, GJ
    EUROPEAN JOURNAL OF CONTROL, 2003, 9 (2-3) : 279 - 284
  • [2] Quantum entanglement criteria
    Sumairi, AiniSyahida
    Hazmin, S. N.
    Ooi, C. H. Raymond
    JOURNAL OF MODERN OPTICS, 2013, 60 (07) : 589 - 597
  • [3] Quantum Entanglement on a Hypersphere
    James F. Peters
    Arturo Tozzi
    International Journal of Theoretical Physics, 2016, 55 : 3689 - 3696
  • [4] Quantum entanglement in elliptical quantum corrals
    Nizama, M.
    Frustaglia, D.
    Hallberg, K.
    PHYSICA B-CONDENSED MATTER, 2009, 404 (18) : 2819 - 2821
  • [6] Quantum Entanglement on a Hypersphere
    Peters, James F.
    Tozzi, Arturo
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2016, 55 (08) : 3689 - 3696
  • [7] Dynamics of quantum entanglement in quantum channels
    Shi-Dong Liang
    Quantum Information Processing, 2017, 16
  • [8] Dynamics of quantum entanglement in quantum channels
    Liang, Shi-Dong
    QUANTUM INFORMATION PROCESSING, 2017, 16 (08)
  • [9] Quantum entanglement and quantum computational algorithms
    Arvind
    PRAMANA-JOURNAL OF PHYSICS, 2001, 56 (2-3): : 357 - 365
  • [10] Quantum Entanglement and Teleportation in a Vertical Quantum Dot
    Li-Guo Qin
    Li-Jun Tian
    Guo-Hong Yang
    International Journal of Theoretical Physics, 2013, 52 : 4313 - 4322