Numerical solution of an ionic Fokker-Planck equation with electronic temperature

被引:29
作者
Buet, C [1 ]
Dellacherie, S
Sentis, R
机构
[1] CEA, F-91680 Bruyeres Le Chatel, France
[2] CEA, F-91191 Gif Sur Yvette, France
关键词
kinetics model; Fokker-Planck Landau equation; plasma physics; numerical scheme;
D O I
10.1137/S0036142999359669
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe a numerical scheme for dealing with an ion/electron collision operator of the Fokker-Planck type; for that purpose, we introduce the notion of the entropic average of two positive quantities. This scheme has the property to be entropic in the sense of Boltzmann's H-theorem under a CFL criteria. Moreover, we prove that the solution of the semidiscrete scheme converges towards a unique Maxwellian equilibrium state when the time grows. Numerical applications are given and show that our scheme is more precise than the classical Chang-Cooper one.
引用
收藏
页码:1219 / 1253
页数:35
相关论文
共 22 条
[1]   CONSERVATIVE FINITE-DIFFERENCE SCHEMES FOR THE FOKKER-PLANCK EQUATION NOT VIOLATING THE LAW OF AN INCREASING ENTROPY [J].
BEREZIN, YA ;
KHUDICK, VN ;
PEKKER, MS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 69 (01) :163-174
[2]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205, DOI DOI 10.1088/0741-3335/47/10/005
[3]  
BROWERS RL, 1991, NUMERICAL MODELING A
[4]   Numerical analysis of conservative and entropy schemes for the Fokker-Planck-Landau equation [J].
Buet, C ;
Cordier, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (03) :953-973
[5]   Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation [J].
Buet, C ;
Cordier, S ;
Degond, P ;
Lemou, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 133 (02) :310-322
[6]   Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation [J].
Buet, C ;
Cordier, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 145 (01) :228-245
[7]  
BUET C, UNPUB NUMERICAL ANAL
[8]   KINETIC SIMULATION OF A COLLISIONAL SHOCK-WAVE IN A PLASMA [J].
CASANOVA, M ;
LARROCHE, O ;
MATTE, JP .
PHYSICAL REVIEW LETTERS, 1991, 67 (16) :2143-2146
[9]  
Chang J. S., 1970, Journal of Computational Physics, V6, P1, DOI 10.1016/0021-9991(70)90001-X
[10]  
Decoster A., 1998, FLUID EQUATIONS TRAN