Characteristics of ash and slag from four biomass-fired power plants: Ash/slag ratio, unburned carbon, leaching of major and trace elements

被引:46
|
作者
Wang, Xuebin [1 ]
Zhu, Yiming [1 ,2 ]
Hu, Zhongfa [1 ]
Zhang, Lan [3 ]
Yang, Shunzhi [4 ]
Ruan, Renhui [1 ]
Bai, Shengjie [1 ]
Tan, Houzhang [1 ]
机构
[1] Xi An Jiao Tong Univ, MOE Key Lab Thermofluid Sci & Engn, Xian 710049, Shaanxi, Peoples R China
[2] Shenyang Aerosp Univ, Coll Energy & Environm, Liaoning Prov Key Lab Clean Energy, Shenyang 110136, Liaoning, Peoples R China
[3] Henan Prov Boiler Pressure Vessel Safety Inspect, Zhengzhou 450016, Peoples R China
[4] Guoneng Xunxian Biopower Generat Co Ltd, Hebi 456250, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass-fired grate boiler; Ash/slag ratio; Leaching; Trace element; Unburned carbon; PARTICULATE MATTER; PRETREATMENT; COMBUSTION; PYROLYSIS; BEHAVIOR; SOIL;
D O I
10.1016/j.enconman.2020.112897
中图分类号
O414.1 [热力学];
学科分类号
摘要
The utilization of biomass energy is attracting worldwide attention due to the worsening energy crisis and the concerns on carbon dioxide emission. However, the rapidly development of biomass-fired power plants generate enormous amount of slag and ash. At present, the main treatment method of biomass slag and ash is landfill, which not only requires high cost, but also causes a series of environmental issues. Aiming at this problem, the slag and fly ash from four biomass power plants were sampled and characterized. The major/trace element composition and leaching characteristics of slag and fly ash are analyzed, and the effect of volatile mineral in these solid residues on furnace efficiency is also evaluated. The results indicate that for biomass- fired grate furnaces, in the generated solid residues, the slag accounts 60 similar to 70% while the fly ash accounts for 30 similar to 40%. The volatile elements in slag are much lower than those in fly ash, and the unburned carbon content of fly ash is generally lower than that of slag. Due to the enrichment of volatile minerals in fly ash, instead of 815 degrees C, 550 degrees C is suggested to measure the unburned carbon content in fly ash. When the measuring temperature of unburned carbon decreases from 815 degrees C to 550 degrees C, the measured energy loss from the incomplete combustion of solid fuels decreases by one third, which affords a more reasonable evaluation on combustion efficiency. The contents of cadmium and lead in certain fly ash samples exceed the standard, however, all fly ash samples have a high leaching rate of potassium but low leaching rates of copper, zinc, cadmium, lead, chromium and arsenic. It indicates that the fly ash from biomass-fired grate furnace is suitable for producing potassium fertilizer by leaching instead of direct soil fertilization or landfill. The leaching rate of most minerals in slag is much lower than that in fly ash and the contents of heavy metals are far below the prescribed upper limit in standard, which indicates that the slag from biomass-fired grate boiler is more suitable for direct use in soil improvement due to the low contents of hazardous elements.
引用
收藏
页数:9
相关论文
共 44 条
  • [31] Graphitization of unburned carbon from oil-fired fly ash applied for anode materials of high power lithium ion batteries
    Yeh, Tzoo-Shing
    Wu, Yu-Shiang
    Lee, Yuan-Haun
    MATERIALS CHEMISTRY AND PHYSICS, 2011, 130 (1-2) : 309 - 315
  • [32] Potential environmental risk of trace elements in fly ash and gypsum from ultra-low emission coal-fired power plants in China
    Han, Deming
    Xu, Liwen
    Wu, Qingru
    Wang, Shuxiao
    Duan, Lei
    Wen, Minneng
    Li, Zhijian
    Tang, Yi
    Li, Guoliang
    Liu, Kaiyun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 798
  • [33] A comparative evaluation of minerals and trace elements in the ashes from lignite, coal refuse, and biomass fired power plants
    Singh, Smriti
    Ram, Lal C.
    Masto, Reginald E.
    Verma, Santosh K.
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2011, 87 (02) : 112 - 120
  • [34] Distribution characteristics and environmental risk assessment of trace elements in desulfurization sludge from coal-fired power plants
    Wang, Tao
    Lou, Yuanbo
    Jiang, Shengchao
    Wang, Jiawei
    Zhang, Yongsheng
    Pan, Wei-Ping
    FUEL, 2022, 314
  • [35] Associations and Pollution Potential of Selected Trace and Major Elements in Filter Lignite Ash from the "Nikola Tesla A" Power Plant (Obrenovac, Serbia) (I) - Leaching Experiments
    Popovic, A.
    Djordjevic, D.
    Relic, D.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2013, 35 (06) : 529 - 537
  • [36] Distribution of the main inorganic elements of Kaa-Khem coals in ash-and-slag waste from the Kyzyl heat and power plant
    Tas-ool, L. Kh.
    Yanchat, N. N.
    Arakchaa, K. D.
    SOLID FUEL CHEMISTRY, 2012, 46 (05) : 322 - 327
  • [37] Distribution of the main inorganic elements of Kaa-Khem coals in ash-and-slag waste from the Kyzyl heat and power plant
    L. Kh. Tas-ool
    N. N. Yanchat
    K. D. Arakchaa
    Solid Fuel Chemistry, 2012, 46 : 322 - 327
  • [38] Improving the Rate Capability of Unburned Carbon from Oil-fired Fly Ash as an Anode Material in High-power Lithium Ion Batteries
    Wu, Yu-Shiang
    Yeh, Tzuo-Shing
    Lee, Yuan-Haun
    APPLICATIONS OF ENGINEERING MATERIALS, PTS 1-4, 2011, 287-290 : 1304 - +
  • [39] Soil contamination caused by fly ash from coal-fired thermal power plants in India: Spatiotemporal distribution and elemental leaching potential
    Luo, Chen
    Pajala, Gustav
    Yekta, Sepehr Shakeri
    Sarkar, Sayantan
    Klump, J. Val
    Pujari, Paras
    Routh, Joyanto
    APPLIED GEOCHEMISTRY, 2024, 170
  • [40] Leaching morphology characteristics and environmental risk assessment of 13 hazardous trace elements from municipal solid waste incineration fly ash
    Lou, Yuanbo
    Jiang, Shengchao
    Du, Bing
    Dai, Xiaodong
    Wang, Tao
    Wang, Jiawei
    Zhang, Yongsheng
    FUEL, 2023, 346