Best proximity point results for p-proximal contractions

被引:45
作者
Altun, I. [1 ,2 ]
Aslantas, M. [3 ]
Sahin, H. [4 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Cankiri Karatekin Univ, Fac Sci, Dept Math, TR-18100 Cankiri, Turkey
[4] Amasya Univ, Fac Sci & Arts, Dept Math, Amasya, Turkey
关键词
best proximity point; p-proximal contraction; fixed point; complete; metric space; FIXED-POINTS; THEOREMS; EXTENSIONS; EXISTENCE;
D O I
10.1007/s10474-020-01036-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the concepts of p-proximal contraction and p-proximal contractive mappings on metric spaces. Then we give some best proximity point results for such mappings. Also we provide some illustrative examples to compare our results with some earliers.
引用
收藏
页码:393 / 402
页数:10
相关论文
共 20 条
[1]   WEAK P-G -PROPERTY AND BEST PROXIMITY POINTS [J].
Ali, Muhammad Usman ;
Kamran, Tayyab .
PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2018, 104 (118) :209-216
[2]   P-CONTRACTIVE MAPPINGS ON METRIC SPACES [J].
Altun, Ishak ;
Durmaz, Gonca ;
Olgun, Murat .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018, 2018
[3]   BEST PROXIMITY POINT THEOREMS FOR NON-SELF PROXIMAL REICH TYPE CONTRACTIONS IN COMPLETE METRIC SPACES [J].
Ampadu, Clement Boateng .
FIXED POINT THEORY, 2018, 19 (02) :449-452
[4]  
[Anonymous], 2014, ABSTRACT APPL ANAL
[5]   Best Proximity Point Theorems for Some Special Proximal Contractions [J].
Basha, S. Sadiq .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (10) :1182-1193
[6]   Best Proximity Points: Optimal Solutions [J].
Basha, S. Sadiq .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (01) :210-216
[7]   Extensions of Banach's Contraction Principle [J].
Basha, S. Sadiq .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2010, 31 (05) :569-576
[8]   A best proximity point theorem for Geraghty-contractions [J].
Caballero, J. ;
Harjani, J. ;
Sadarangani, K. .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[9]  
Edelstein M., 1962, J. Lond. Math. Soc., V1, P74, DOI [10.1112/jlms/s1-37.1.74, DOI 10.1112/JLMS/S1-37.1.74]
[10]   EXTENSIONS OF 2 FIXED POINT THEOREMS OF BROWDER,FE [J].
FAN, K .
MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (03) :234-&