FINITE REPRESENTABILITY OF HOMOGENEOUS HILBERTIAN OPERATOR SPACES IN SPACES WITH FEW COMPLETELY BOUNDED MAPS

被引:0
作者
Oikhberg, T. [1 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Operator spaces; homogeneons Hilbertian spaces; finite representability; Operator Approximation Property;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For every homogeneous Hilbertian operator space H, we construct a Hilbertian operator space X such that every infinite dimensional sub-quotient Y of X is completely indecomposable, and fails the Operator Approximation Property, yet H is completely finitely representable in Y. If H satisfies certain conditions, we also prove that every completely bounded map on such Y is a compact perturbation of a scalar.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 11 条
[1]  
[Anonymous], 2000, OPERATOR SPACES
[2]  
Davidson K., 1988, Nest algebras: Triangular forms for operator algebras on Hilbert space
[3]  
Gowers W T., 1993, J AM MATH SOC, V6, P851, DOI 10.1090/S0894-0347-1993-1201238-0
[4]  
LINDENSTRAUSS J., 1977, CLASSICAL BANACH SPA
[5]  
Maurey B, 2003, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 2, P1247, DOI 10.1016/S1874-5849(03)80036-0
[6]  
Odell E, 2003, HANDBOOK OF THE GEOMETRY OF BANACH SPACES, VOL 2, P1333, DOI 10.1016/S1874-5849(03)80038-4
[7]   THE DISTORTION PROBLEM [J].
ODELL, E ;
SCHLUMPRECHT, T .
ACTA MATHEMATICA, 1994, 173 (02) :259-281
[8]   Operator spaces with few completely bounded maps [J].
Oikhberg, T ;
Ricard, É .
MATHEMATISCHE ANNALEN, 2004, 328 (1-2) :229-259
[9]  
Paulsen V., 2002, Completely Bounded Maps and Operator Algebras, Cambridge studies in advanced mathematics
[10]  
PISIER G, 2003, INTRO THEORY OPERATO