Bernoulli Identities and Combinatoric Convolution Sums with Odd Divisor Functions

被引:1
|
作者
Kim, Daeyeoul [1 ]
Park, Yoon Kyung [2 ]
机构
[1] Natl Inst Math Sci, Taejon 305811, South Korea
[2] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
关键词
D O I
10.1155/2014/890973
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the combinatoric convolution sums involving odd divisor functions, their relations to Bernoulli numbers, and some interesting applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Certain combinatoric Bernoulli polynomials and convolution sums of divisor functions
    Kim, Daeyeoul
    Ikikardes, Nazli Yildiz
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [2] Certain combinatoric Bernoulli polynomials and convolution sums of divisor functions
    Daeyeoul Kim
    Nazli Yildiz Ikikardes
    Advances in Difference Equations, 2013
  • [3] A PRODUCT FORMULA FOR COMBINATORIC CONVOLUTION SUMS OF ODD DIVISOR FUNCTIONS
    Lee, Kwangchul
    Kim, Daeyeoul
    Seo, Gyeong-Sig
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (02): : 243 - 257
  • [4] RELATIONS OF COMBINATORIC CONVOLUTION SUMS FOR RESTRICTED DIVISOR FUNCTIONS AND BERNOULLI POLYNOMIALS
    Kim, Daeyeoul
    Ikikardes, Nazli Yildiz
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 731 - 748
  • [5] Bernoulli numbers and certain convolution sums with divisor functions
    Kim, Daeyeoul
    Kim, Aeran
    Ikikardes, Nazli Yildiz
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [6] Bernoulli numbers and certain convolution sums with divisor functions
    Daeyeoul Kim
    Aeran Kim
    Nazli Yildiz Ikikardes
    Advances in Difference Equations, 2013
  • [7] Euler Polynomials and Combinatoric Convolution Sums of Divisor Functions with Even Indices
    Kim, Daeyeoul
    Bayad, Abdelmejid
    Park, Joongsoo
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] A Study of Approximate Normal Distribution Derived from Combinatoric Convolution Sums of Divisor Functions
    Kim, Daeyeoul
    Lee, Kwangchul
    Seo, Gyeong-Sig
    FILOMAT, 2016, 30 (07) : 1811 - 1821
  • [9] CERTAIN COMBINATORIC CONVOLUTION SUMS AND THEIR RELATIONS TO BERNOULLI AND EULER POLYNOMIALS
    Kim, Daeyeoul
    Bayad, Abdelmejid
    Ikikardes, Nazli Yildiz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (03) : 537 - 565
  • [10] Evaluating binomial convolution sums of divisor functions in terms of Euler and Bernoulli polynomials
    Cho, Bumkyu
    Park, Ho
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (02) : 509 - 525