Lithium phosphosulfide electrolytes for solid-state batteries: Part II

被引:3
作者
Lu, Xin [1 ,2 ]
Tsai, Chih-Long [1 ]
Yu, Shicheng [1 ]
He, Hongying [3 ]
Camara, Osmane [1 ]
Tempel, Hermann [1 ]
Liu, Zigeng [1 ]
Windmueller, Anna [1 ]
Alekseev, Evgeny, V [1 ]
Koecher, Simone [1 ]
Basak, Shibabrata [1 ,4 ,5 ]
Lu, Li [6 ]
Eichel, Ruediger A. [1 ,2 ,7 ]
Kungl, Hans [1 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK 9 Grundlagen Elekt, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mat & Prozesse Elektrochem Energiespeicher &, D-52074 Aachen, Germany
[3] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[4] Forschungszentrum Julich, Ernst Ruska Ctr Microscopy & Spect Electrons, D-52425 Julich, Germany
[5] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[6] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[7] Forschungszentrum Julich, Inst Energie & Klimaforsch IEK 12 Helmholtz Inst, Munster Ion Energy Storage, D-48149 Munster, Germany
关键词
Lithium sulfide; LGPS; argyrodite; sulfide electrolytes; solid-state electrolytes; CONDUCTOR THIO-LISICON; LIQUID-PHASE TECHNIQUE; SUPERIONIC CONDUCTORS; IONIC-CONDUCTIVITY; LI6PS5X X; ELECTROCHEMICAL STABILITY; SULFIDE ELECTROLYTES; INTERPHASE FORMATION; INTERFACE STABILITY; DIFFUSION PATHWAYS;
D O I
10.1142/S1793604722400021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Among the electrolytes designed for all solid-state batteries, the phosphosulfide electrolytes stand out with respect to their very high Li-ion conductivities. However, when in contact with metallic lithium anodes, there are remaining challenges to ensure long-term operation stability. Both issues, the Li-ion conductivity and the electrochemical stability vs. metallic lithium, are the subject of this review. After introducing the background for developing all solid-state Li-ion batteries with metallic lithium anode and providing a brief overview on four types of phosphosulfide electrolytes, in Part I of the review a compound treatment on the Li-P-S and the LiSICon type electrolytes had been given. Part II of the review will continue following the same schedule by discussing the chemistry, structure, processing and Li-ion conductivity of the LGPS and the Argyrodite-type phosphosulfides. Emphasis is put on the treatise of the chemistries supported by the consideration of specific phase diagrams and intra-type comparisons of the Li-ion conductivities at ambient temperature. In a summarizing section, inter-type comparisons among selected compositions of the Li-P-S type, the LiSICon-type, the LGPS-type and the Argyrodite-type phosphosulfides are addressed for the two main issues for electrolytes in all solid-state batteries, the Li-ion conductivities and the electrochemical stability vs. metallic lithium. The review is concluded with remarks on the status and the perspectives of the research on Li-ion conducting phosphosulfide electrolytes.
引用
收藏
页数:42
相关论文
共 170 条
[1]   Structural requirements for fast lithium ion migration in Li10GeP2S12 [J].
Adams, Stefan ;
Rao, R. Prasada .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) :7687-7691
[2]   Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution [J].
Adeli, Parvin ;
Bazak, J. David ;
Park, Kern Ho ;
Kochetkov, Ivan ;
Huq, Ashfia ;
Goward, Gillian R. ;
Nazar, Linda F. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (26) :8681-8686
[3]   THE ACTIVATION ENTROPY FOR TRANSPORT IN IONIC CONDUCTORS [J].
ALMOND, DP ;
WEST, AR .
SOLID STATE IONICS, 1987, 23 (1-2) :27-35
[4]   Phonons and the mechanism of ion transport in some superionic conductors [J].
Aniya, M ;
Wakamura, K .
PHYSICA B-CONDENSED MATTER, 1996, 219-20 :463-465
[5]   Halide doping effect on solvent-synthesized lithium argyrodites Li6PS5X (X = Cl, Br, I) superionic conductors [J].
Arnold, William ;
Buchberger, Dominika A. ;
Li, Yang ;
Sunkara, Mahendra ;
Druffel, Thad ;
Wang, Hui .
JOURNAL OF POWER SOURCES, 2020, 464
[6]   Development of an all-solid-state lithium battery by slurry-coating procedures using a sulfidic electrolyte [J].
Ates, Tugce ;
Keller, Marlou ;
Kulisch, Joern ;
Adermann, Torben ;
Passerini, Stefano .
ENERGY STORAGE MATERIALS, 2019, 17 :204-210
[7]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[8]   New Insight for Solid Sulfide Electrolytes LSiPSI by Using Si/P/S as the Raw Materials and I Doping [J].
Bai, Yang ;
Zhao, Yanbiao ;
Li, Weidong ;
Meng, Linghui ;
Bai, Yongping ;
Chen, Guorong .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (15) :12930-12937
[9]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[10]   On the underestimated influence of synthetic conditions in solid ionic conductors [J].
Banik, Ananya ;
Famprikis, Theodosios ;
Ghidiu, Michael ;
Ohno, Saneyuki ;
Kraft, Marvin A. ;
Zeier, Wolfgang G. .
CHEMICAL SCIENCE, 2021, 12 (18) :6238-6263