Lie groups and quantum mechanics

被引:6
作者
Nucci, M. C. [1 ]
Leach, P. G. L. [1 ,2 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
[2] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, ZA-4000 Durban, South Africa
关键词
Lie symmetry; Nonlinear canonical transformation; Classical quantisation; EQUATIONS;
D O I
10.1016/j.jmaa.2013.04.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Mathematical modelling should present a consistent description of physical phenomena. We illustrate an inconsistency with two Hamiltonians-the standard Hamiltonian and an example found in Goldstein-for the simple harmonic oscillator and its quantisation. Both descriptions are rich in Lie point symmetries and so one can calculate many Jacobi Last Multipliers and therefore Lagrangians. The Last Multiplier provides the route to the resolution of this problem and indicates that the great debate about the quantisation of dissipative systems should never have occurred. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:219 / 228
页数:10
相关论文
共 21 条
  • [1] [Anonymous], NUOVO CIMENTO B
  • [2] [Anonymous], 1990, Dirac: A Scientific Biography
  • [3] [Anonymous], 1886, VORLESUNGEN DYNAMIK
  • [4] BJORKEN D, 1964, RELATIVISTIC QUANTUM
  • [5] Bluman G W., 1989, APPL MATH SCI, V81, pXIII
  • [6] On classical and quantum objectivity
    Catren, Gabriel
    [J]. FOUNDATIONS OF PHYSICS, 2008, 38 (05) : 470 - 487
  • [7] Diver P., 1986, APPL LIE GROUPS DIFF
  • [8] Herbert G., 1980, CLASSICAL MECH
  • [9] Master equations for effective Hamiltonians
    Klimov, AB
    Romero, JL
    Delgado, J
    Sánchez-Soto, LL
    [J]. JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (01) : 34 - 39
  • [10] Lie S., 1874, FORDHANDLINGER VIDEN, P255