Fine-tuning of the interface in high-quality epitaxial silicon films deposited by plasma-enhanced chemical vapor deposition at 200 °C

被引:15
|
作者
Moreno, Mario [1 ]
Patriarche, Gilles [2 ]
Roca i Cabarrocas, Pere [3 ]
机构
[1] INAOE, Dept Elect, Natl Inst Astrophys Opt & Elect, Puebla 72840, Mexico
[2] CNRS, Lab Photon & Nanostruct, F-91460 Marcoussis, France
[3] Ecole Polytech, CNRS, Lab Phys Interfaces & Couches Minces, F-91128 Palaiseau, France
关键词
LOW-TEMPERATURE; SPECTROSCOPIC ELLIPSOMETRY; GROWTH; HYDROGEN; SI; SILANE; SURFACE;
D O I
10.1557/jmr.2013.52
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-quality epitaxial silicon thin films have been deposited by plasma-enhanced chemical vapor deposition (PECVD) at 200 degrees C in a standard radiofrequency (RF) PECVD reactor. We optimized a silicon tetrafluoride (SiF4) plasma to clean the surface of <100> crystalline silicon wafers and without breaking vacuum, an epitaxial silicon film was grown from SiF4, hydrogen (H-2), and argon (Ar) gas mixtures. We demonstrate that the H-2/SiF4 flow rate ratio is a key parameter to grow high-quality epitaxial silicon films. Moreover, by changing this ratio, we can fine-tune the composition of the interface between the crystalline silicon (c-Si) wafer and the epitaxial film. In this way, at low values of the H-2/SiF4 flow rate ratio, an abrupt interface is achieved. On the contrary, by increasing this ratio we can obtain a porous and fragile interface layer, composed of hydrogen-rich microcavities, which allows the transfer of the epitaxial film to foreign substrates.
引用
收藏
页码:1626 / 1632
页数:7
相关论文
共 50 条
  • [1] Preparation and electric characteristics of MgO films deposited by plasma-enhanced chemical vapor deposition
    Ko, Jun Bin
    Kim, Seung Min
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2009, 10 (05): : 643 - 646
  • [2] Microstructure characterization of microcrystalline silicon thin films deposited by very high frequency plasma-enhanced chemical vapor deposition by spectroscopic ellipsometry
    Zhang, He
    Zhang, Xiaodan
    Wei, Changchun
    Sun, Jian
    Geng, Xinhua
    Xiong, Shaozhen
    Zhao, Ying
    THIN SOLID FILMS, 2011, 520 (02) : 861 - 865
  • [3] Plasma-Enhanced Chemical Vapor Deposition of Silicon Films at Low Pressure in GEC Reference Cell
    Siari, K.
    Rebiai, S.
    Bahouh, H.
    Bouanaka, F.
    PLASMA PHYSICS REPORTS, 2020, 46 (06) : 667 - 674
  • [4] Polymorphous silicon thin films obtained by plasma-enhanced chemical vapor deposition using dichlorosilane as silicon precursor
    Remolina, A.
    Monroy, B. M.
    Garcia-Sanchez, M. F.
    Ponce, A.
    Bizarro, M.
    Alonso, J. C.
    Ortiz, A.
    Santana, G.
    NANOTECHNOLOGY, 2009, 20 (24)
  • [5] Optical properties of silicon oxynitride films grown by plasma-enhanced chemical vapor deposition
    Aschwanden, R.
    Kothernamn, R.
    Albert, M.
    Golla, C.
    Meier, C.
    THIN SOLID FILMS, 2021, 736
  • [6] Dependence of Mechanical Stresses in Silicon Nitride Films on the Mode of Plasma-Enhanced Chemical Vapor Deposition
    Novak, A. V.
    Novak, V. R.
    Dedkova, A. A.
    Gusev, E. E.
    SEMICONDUCTORS, 2018, 52 (15) : 1953 - 1957
  • [7] Structural and photo-luminescence properties of nanocrystalline silicon films deposited at low temperature by plasma-enhanced chemical vapor deposition
    Ali, Atif Mossad
    Inokuma, Takao
    Hasegawa, Seiichi
    APPLIED SURFACE SCIENCE, 2006, 253 (03) : 1198 - 1204
  • [8] Gas-phase kinetics in atmospheric-pressure plasma-enhanced chemical vapor deposition of silicon films
    Kakiuchi, Hiroaki
    Ohmi, Hiromasa
    Yasutake, Kiyoshi
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (05)
  • [9] Plasma-enhanced chemical vapor deposition of organic particle thin films
    Li, Dongsheng
    Vrtis, Raymond
    Shahravan, Anaram
    Matsoukas, Themis
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (03) : 985 - 996
  • [10] Room Temperature Deposition of Silicon Nanodot Clusters by Plasma-Enhanced Chemical Vapor Deposition
    Kim, Jae-Kwan
    Kim, Jun Young
    Yoon, Jae-Sik
    Lee, Ji-Myon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (10) : 7173 - 7176