Three-dimensional hexagonal GDC interlayer for area enhancement of low-temperature solid oxide fuel cells

被引:17
作者
Bae, Jiwoong [1 ]
Lee, Dohaeng [1 ]
Hong, Soonwook [1 ]
Yang, Hwichul [1 ]
Kim, Young-Beom [1 ,2 ]
机构
[1] Hanyang Univ, Dept Mech Convergence Engn, Seoul 133791, South Korea
[2] Hanyang Univ, Inst Nano Sci & Technol, Seoul 133791, South Korea
基金
新加坡国家研究基金会;
关键词
Solid oxide fuel cell; 3-D nanostructuring; Gadolinium-doped ceria; Functional layer; GADOLINIA-DOPED CERIA; YTTRIA-STABILIZED ZIRCONIA; NANOSPHERE LITHOGRAPHY; HIGH-PERFORMANCE; ELECTROLYTE; FILM; SIZE;
D O I
10.1016/j.surfcoat.2015.07.066
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A three-dimensional hexagonal gadolinium-doped ceria (GDC) interlayer is fabricated to enhance the cathodic surface area of low-temperature solid oxide fuel cells (LT-SOFCs). By using modified nanosphere lithography method, 3-D nanostructure is successfully fabricated. As a result of the nanostructuring, the 3-D hexagonal GDC interlayer has a 70% increase in cathodic surface area. Electrochemical impedance spectroscopy reveals a 2-fold decrease in the electrode resistance compared with a plane cell, resulting in a current-voltage behavior with a 60% higher peak power density. The superior electrode reaction is attributed to the large surface area (similar to 1.7 times larger) due to the 3-D hexagonal cathodic interlayer. This novel fabrication method can be applied to almost all kinds of LT-SOFC structures, including large-scale and substrate-supported platforms, and thereby it will contribute to commercializing LT-SOFCs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 59
页数:6
相关论文
共 29 条
[1]   Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm2 at 450 °C [J].
An, Jihwan ;
Kim, Young-Beom ;
Park, Joonsuk ;
Guer, Turgut M. ;
Prinz, Fritz B. .
NANO LETTERS, 2013, 13 (09) :4551-4555
[2]   Influence of the grain size of samaria-doped ceria cathodic interlayer for enhanced surface oxygen kinetics of low-temperature solid oxide fuel cell [J].
Bae, Jiwoong ;
Hong, Soonwook ;
Koo, Bongjun ;
An, Jihwan ;
Prinz, Fritz B. ;
Kim, Young-Beom .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (15) :3763-3768
[3]   Improved Solid Oxide Fuel Cell Performance with Nanostructured Electrolytes [J].
Chao, Cheng-Chieh ;
Hsu, Ching-Mei ;
Cui, Yi ;
Prinz, Fritz B. .
ACS NANO, 2011, 5 (07) :5692-5696
[4]   Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte [J].
deSouza, S ;
Visco, SJ ;
DeJonghe, LC .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (03) :L35-L37
[5]   Thin-film solid oxide fuel cell with high performance at low-temperature [J].
deSouza, S ;
Visco, SJ ;
DeJonghe, LC .
SOLID STATE IONICS, 1997, 98 (1-2) :57-61
[6]   Low-Temperature Micro-Solid Oxide Fuel Cells with Partially Amorphous La0.6Sr0.4CoO3-δ Cathodes [J].
Evans, Anna ;
Martynczuk, Julia ;
Stender, Dieter ;
Schneider, Christof W. ;
Lippert, Thomas ;
Prestat, Michel .
ADVANCED ENERGY MATERIALS, 2015, 5 (01)
[7]   Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells [J].
Fan, Zeng ;
An, Jihwan ;
Iancu, Andrei ;
Prinz, Fritz B. .
JOURNAL OF POWER SOURCES, 2012, 218 :187-191
[8]   Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics [J].
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (24) :5599-5611
[9]   High-performance ultrathin solid oxide fuel cells for low-temperature operation [J].
Huang, Hong ;
Nakamura, Masafumi ;
Su, Peichen ;
Fasching, Rainer ;
Saito, Yuji ;
Prinz, Fritz B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (01) :B20-B24
[10]   Ceria-based solid electrolytes - Review [J].
Inaba, H ;
Tagawa, H .
SOLID STATE IONICS, 1996, 83 (1-2) :1-16