Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Zhang, Jian
    Gan, Zai-hui
    Guo, Bo-ling
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (03): : 427 - 442
  • [42] Stability of standing waves for a nonlinear Klein-Gordon equation with delta potentials
    Csobo, Elek
    Genoud, Francois
    Ohta, Masahito
    Royer, Julien
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 268 (01) : 353 - 388
  • [43] Stability of the standing waves for a class of coupled nonlinear Klein-Gordon equations
    Jian Zhang
    Zai-hui Gan
    Bo-ling Guo
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 427 - 442
  • [44] ON THE ROTATING NONLINEAR KLEIN-GORDON EQUATION: NONRELATIVISTIC LIMIT AND NUMERICAL METHODS
    Mauser, Norbert J.
    Zhang, Yong
    Zhao, Xiaofei
    MULTISCALE MODELING & SIMULATION, 2020, 18 (02) : 999 - 1024
  • [45] INSTABILITY OF THE STANDING WAVES FOR THE NONLINEAR KLEIN-GORDON EQUATIONS IN ONE DIMENSION
    Wu, Yifei
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (06) : 4085 - 4103
  • [48] Existence and multiplicity of stable bound states for the nonlinear Klein-Gordon equation
    Bonanno, Claudio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 2031 - 2046
  • [49] Suppression of symmetry breaking of nonlinear modes by defocusing saturable nonlinearity in parity-time symmetric potentials
    He, Xueqing
    Ning, Tigang
    Zheng, Jingjing
    Li, Jing
    Pei, Li
    Bai, Bing
    You, Haidong
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2021, 38 (08) : 2290 - 2296
  • [50] Periodic traveling wave solutions of discrete nonlinear Klein-Gordon lattices
    Hennig, Dirk
    Karachalios, Nikos I.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (17) : 18400 - 18419