Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] A NEKHOROSHEV TYPE THEOREM FOR THE NONLINEAR KLEIN-GORDON EQUATION WITH POTENTIAL
    Pasquali, Stefano
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (09): : 3573 - 3594
  • [32] The solitary solutions of nonlinear Klein-Gordon field with minimal length
    Jahangiri, A.
    Miraboutalebi, S.
    Ahmadi, F.
    Masoudi, A. A.
    PHYSICS LETTERS B, 2021, 818
  • [33] Multi-Solitary Waves for the Nonlinear Klein-Gordon Equation
    Bellazzini, Jacopo
    Ghimenti, Marco
    Le Coz, Stefan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (08) : 1479 - 1522
  • [34] ASYMMETRIC OPTICAL AMPLIFIER BASED ON PARITY-TIME SYMMETRY
    Li, Rujiang
    Li, Pengfei
    Li, Lu
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2013, 14 (02): : 121 - 126
  • [35] Enhanced Frequency Conversion in Parity-Time Symmetry Line
    Hou, Jiankun
    Zhu, Jiefu
    Ma, Ruixin
    Xue, Boyi
    Zhu, Yicheng
    Lin, Jintian
    Jiang, Xiaoshun
    Zheng, Yuanlin
    Chen, Xianfeng
    Cheng, Ya
    Ge, Li
    Wan, Wenjie
    PHYSICAL REVIEW LETTERS, 2024, 132 (25)
  • [36] Interaction of sine-Gordon kinks and breathers with a parity-time-symmetric defect
    Saadatmand, Danial
    Dmitriev, Sergey V.
    Borisov, Denis I.
    Kevrekidis, Panayotis G.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [37] Stability study of a model for the Klein-Gordon equation in Kerr space-time
    Reinhard Beyer, Horst
    Alcubierre, Miguel
    Megevand, Miguel
    Carlos Degollado, Juan
    GENERAL RELATIVITY AND GRAVITATION, 2013, 45 (01) : 203 - 227
  • [38] A new numerical method for discretization of the nonlinear Klein-Gordon model arising in light waves
    Mesgarani, Hamid
    Aghdam, Yones Esmaeelzade
    Darabi, Ezzatollah
    JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (01): : 71 - 84
  • [39] An auxiliary equation technique and exact solutions for a nonlinear Klein-Gordon equation
    Lv, Xiumei
    Lai, Shaoyong
    Wu, YongHong
    CHAOS SOLITONS & FRACTALS, 2009, 41 (01) : 82 - 90
  • [40] Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation
    Jones, Christopher K. R. T.
    Marangell, Robert
    Miller, Peter D.
    Plaza, Ramon G.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (12) : 4632 - 4703