Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] On the existence of hylomorphic vortices in the nonlinear Klein-Gordon equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Sinibaldi, E.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (01) : 1 - 24
  • [22] Exact control of parity-time symmetry in periodically modulated nonlinear optical couplers
    Yang, Baiyuan
    Luo, Xiaobing
    Hu, QiangLin
    Yu, XiaoGuang
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [23] Parity-Time Symmetry in Magnetic Materials and Devices
    Zhang, Zhitao
    Xin, Chao
    Liu, Haoliang
    ADVANCED ELECTRONIC MATERIALS, 2024, 10 (03)
  • [24] Numerical investigation of fractional nonlinear sine-Gordon and Klein-Gordon models arising in relativistic quantum mechanics
    Nikan, O.
    Avazzadeh, Z.
    Machado, J. A. Tenreiro
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2020, 120 (120) : 223 - 237
  • [25] Differential quadrature solution of nonlinear Klein-Gordon and sine-Gordon equations
    Pekmen, B.
    Tezer-Sezgin, M.
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (08) : 1702 - 1713
  • [26] NUMERICAL TREATMENT OF COUPLED NONLINEAR HYPERBOLIC KLEIN-GORDON EQUATIONS
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Abdelkawy, M. A.
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (3-4): : 247 - 264
  • [27] Wave-Particle Duality in Nonlinear Klein-Gordon Equation
    N. Riazi
    International Journal of Theoretical Physics, 2011, 50 : 3451 - 3458
  • [28] On Behavior of Solutions for Nonlinear Klein-Gordon Wave Type Models with a Logarithmic Nonlinearity and Multiple Time-Varying Delays
    Belmiloudi, Aziz
    AXIOMS, 2024, 13 (01)
  • [29] Breather solutions in conservative and dissipative nonlinear Klein-Gordon lattices
    Hennig, Dirk
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2024, 26 (02)
  • [30] INTERNAL DEGREES OF FREEDOM IN PERTURBED NONLINEAR KLEIN-GORDON EQUATIONS
    Vazquez, L.
    Jimenez, S.
    Bellorin, A.
    Guerrero, L. E.
    Gonzalez, J. A.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2011, 3 (04): : 527 - 553