Effects of parity-time symmetry in nonlinear Klein-Gordon models and their stationary kinks

被引:10
|
作者
Demirkaya, A. [1 ]
Frantzeskakis, D. J. [2 ]
Kevrekidis, P. G. [3 ]
Saxena, A. [4 ,5 ]
Stefanov, A. [6 ]
机构
[1] Univ Hartford, Dept Math, Hartford, CT 06112 USA
[2] Univ Athens, Dept Phys, Athens 15784, Greece
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 02期
基金
美国国家科学基金会;
关键词
SOLITONS; DYNAMICS; STABILITY;
D O I
10.1103/PhysRevE.88.023203
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this work, we introduce some basic principles of PT-symmetric Klein-Gordon nonlinear field theories. By formulating a particular antisymmetric gain and loss profile, we illustrate that the stationary states of the model do not change. However, the stability critically depends on the gain and loss profile. For a symmetrically placed solitary wave (in either the continuum model or a discrete analog of the nonlinear Klein-Gordon type), there is no effect on the steady state spectrum. However, for asymmetrically placed solutions, there exists a measurable effect of which a perturbative mathematical characterization is offered. It is generally found that asymmetry towards the lossy side leads towards stability, while towards the gain side produces instability. Furthermore, a host of finite size effects, which disappear in the infinite domain limit, are illustrated in connection to the continuous spectrum of the problem.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Planar and radial kinks in nonlinear Klein-Gordon models: Existence, stability, and dynamics
    Kevrekidis, P. G.
    Danaila, I
    Caputo, J-G
    Carretero-Gonzalez, R.
    PHYSICAL REVIEW E, 2018, 98 (05)
  • [2] Stability of solitary waves in nonlinear Klein-Gordon equations
    Raban, Pablo
    Alvarez-Nodarse, Renato
    Quintero, Niurka R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (46)
  • [3] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499
  • [4] Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    Pelinovsky, Dmitry E.
    STUDIES IN APPLIED MATHEMATICS, 2016, 137 (02) : 214 - 237
  • [5] Parity-time symmetry with coherent atomic gases
    Hang, Chao
    Huang, Guoxiang
    ADVANCES IN PHYSICS-X, 2017, 2 (03): : 737 - 783
  • [6] Hylomorphic solitons in the nonlinear Klein-Gordon equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Sinibaldi, E.
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 6 (04) : 311 - 334
  • [7] A nonlinear Klein-Gordon equation for relativistic superfluidity
    Waldron, Oliver
    Van Gorder, Robert A.
    PHYSICA SCRIPTA, 2017, 92 (10)
  • [8] Long-time asymptotics of the damped nonlinear Klein-Gordon equation with a delta potential
    Ishizuka, Kenjiro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 253
  • [9] Nonlinear Anti-(Parity-Time) Symmetric Dimer
    Rodrigues, A. S.
    Ross, R. M.
    Konotop, V. V.
    Saxena, A.
    Kevrekidis, P. G.
    FRONTIERS IN PHYSICS, 2022, 10
  • [10] Soliton-potential interaction in the nonlinear Klein-Gordon model
    Saadatmand, Danial
    Javidan, Kurosh
    PHYSICA SCRIPTA, 2012, 85 (02)