A generalization of the topological Brauer group

被引:0
作者
Ershov, A. V. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Math, Moscow, Russia
关键词
matrix algebra bundle; Brauer group; homotopy functor; first obstruction; twisted K-theory. operator algebra; Fredholm operator;
D O I
10.1017/is008001006jkt027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we study some homotopy invariants which can be defined by means of bundles whose fiber is a matrix algebra. In particular, we introduce a generalization of the Brauer group in the topological context and show that any of its elements can be represented as a locally trivial bundle With Structure group N(k)(x) k is an element of N. Finally, we discuss its possible applications in the twisted K-theory.
引用
收藏
页码:407 / 444
页数:38
相关论文
共 12 条
[1]  
ADAMS JF, 1978, INFINITE LOOP SPACES
[2]  
Atiyah M. F., MATHKT0407054
[3]  
Ershov A. V., 2003, J MATH SCI NEW YORK, V1, P33
[4]  
ERSHOV AV, 2002, FORMAL GROUP LAWS HO
[5]  
ERSHOV AV, 2002, SYMMETRIES COMPLEX C
[6]  
Griffiths P.A., 1981, RATIONAL HOMOTOPY TH
[7]  
GROTHEDIECK A, 1964, SEM BOURBAKI, V290
[8]   The index of projective families of elliptic operators [J].
Mathai, V ;
Melrose, RB ;
Singer, IM .
GEOMETRY & TOPOLOGY, 2005, 9 :341-373
[9]  
PALAIS R. S, 1965, TOPOLOGY, V3, P271
[10]  
Pierce R.S., 1982, Associative Algebras, GTM 88, V88