CORONIZATIONS AND BIG PIECES IN METRIC SPACES

被引:3
作者
Bortz, Simon [1 ]
Hoffman, John [2 ]
Hofmann, Steve [2 ]
Luna-Garcia, Jose Luis [3 ]
Nystrom, Kaj [4 ]
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 3L8, Canada
[4] Uppsala Univ, Dept Math, S-75106 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Carleson measures; corona decompositions; big pieces; geometric lemmas; SINGULAR-INTEGRALS; UNIFORM RECTIFIABILITY; PARABOLIC MEASURE; LAYER POTENTIALS; HARMONIC MEASURE; HEAT-EQUATION; COMMUTATORS; SETS;
D O I
10.5802/aif.3518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that coronizations with respect to arbitrary d-regular sets (not necessarily graphs) imply big pieces squared of these (approximating) sets. This is known (and due to David and Semmes in the case of sufficiently large co-dimension, and to Azzam and Schul in general) in the (classical) setting of Euclidean spaces with Hausdorff measure of integer dimension, where the approximating sets are Lipschitz graphs. Our result is a far reaching generalization of these results and we prove that coronizations imply big pieces squared is a generic property. In particular, our result applies, when suitably interpreted, in metric spaces having a fixed positive (perhaps non-integer) dimension, equipped with a Borel regular measure and with arbitrary approximating sets. As a novel application we highlight how to utilize this general setting in the context of parabolic uniform rectifiability.
引用
收藏
页码:2037 / 2078
页数:42
相关论文
共 34 条
[1]  
[Anonymous], 1990, Colloq. Math, DOI DOI 10.4064/CM-60-61-2-601-628
[2]   Hard Sard: Quantitative Implicit Function and Extension Theorems for Lipschitz Maps [J].
Azzam, Jonas ;
Schul, Raanan .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (05) :1062-1123
[3]  
Bortz S, 2021, Arxiv, DOI arXiv:2103.12830
[4]  
Bortz S, 2023, Arxiv, DOI arXiv:2103.12497
[5]   Harmonic measure and approximation of uniformly rectifiable sets [J].
Bortz, Simon ;
Hofmann, Steve .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) :351-373
[6]  
David GC, 2020, Arxiv, DOI arXiv:2002.10318
[7]   APPLICATIONS OF CAUCHY INTEGRAL ON LIPSCHITZ CURVES [J].
CALDERON, AP ;
CALDERON, CP ;
FABES, E ;
JODEIT, M ;
RIVIERE, NM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (02) :287-290
[8]  
Coifman R., 1991, HARMONIC ANAL, P79
[9]   THE CAUCHY INTEGRAL DEFINES AN OPERATOR ON L2 FOR LIPSCHITZ-CURVES [J].
COIFMAN, RR ;
MCINTOSH, A ;
MEYER, Y .
ANNALS OF MATHEMATICS, 1982, 116 (02) :361-387
[10]   THE SOLUTION OF CALDERON CONJECTURES [J].
COIFMAN, RR ;
DAVID, G ;
MEYER, Y .
ADVANCES IN MATHEMATICS, 1983, 48 (02) :144-148