THE HILBERT BOUNDARY VALUE PROBLEM FOR GENERALIZED ANALYTIC FUNCTIONS IN CLIFFORD ANALYSIS

被引:3
作者
Si, Zhongwei [1 ]
Du, Jinyuan [2 ]
机构
[1] Leshan Normal Univ, Sch Math & Informat Sci, Leshan 614004, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
关键词
Generalized analytic function; Hilbert boundary value problem; (H)over-cap(mu) function;
D O I
10.1016/S0252-9602(13)60006-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R-0,R-n be the real Clifford algebra generated by e(1), e(2), ... , e(n) satisfying e(i)e(j) + e(j)e(i) = -2 delta(ij), i, j, = 1, 2, ... ,n. e(0) is the unit element. Let Omega be an open set. A function f is called left generalized analytic in Omega if f satisfies the equation Lf = 0, where L = q(0)e(0)partial derivative(x0) + q(1)e(1)partial derivative(x1) + ... + q(n)e(n)partial derivative(xn), qi > 0, i = 0, 1, ... ,n. In this article, we first give the kernel function for the generalized analytic function. Further, the Hilbert boundary value problem for generalized analytic functions in R-+(n+1). will be investigated.
引用
收藏
页码:393 / 403
页数:11
相关论文
共 15 条
  • [1] [Anonymous], 1982, CLIFFORD ANAL
  • [2] Bernstein S., 1996, Bull. Belg. Math. Soc. Simon Stevin, V3, P557
  • [3] Delanghe R., 1992, Clifford Algebra and Spinor-Valued Functions
  • [4] GILBERT GE, 1991, CAMBRIDGE STUDIES AD, V26
  • [5] Gong Y., 2004, Complex Var. Elliptic Equ., V49, P303
  • [6] Ji XH, 2000, PROG PHYSIC, V19, P57
  • [7] Obolashvili E., 2003, PROGR MATH PHYS
  • [8] OBOLASHVILI E, 1998, PITMAN MONOGRAPHS SU
  • [9] Obolashvili E., 1996, SOME PARTIAL DIFFERE, V37, P173
  • [10] Wang YF., 2006, COMPLEX VAR ELLIPTIC, V51, P923, DOI [10.1080/17476930600667692, DOI 10.1080/17476930600667692]