GENERAL SOLUTION OF THE HOMOGENEOUS CONVOLUTION EQUATION IN SPACES OF ULTRADIFFERENTIABLE FUNCTIONS

被引:1
作者
Polyakova, D. A. [1 ,2 ]
机构
[1] Southern Fed Univ, Milchakov Str 8A, Rostov Na Donu 344090, Russia
[2] RAS, Vladikavkaz Sci Ctr, Southern Math Inst, Markus Str 22, Vladikavkaz 362027, Russia
关键词
Ultradifferentiable functions; convolution equation; differential equation of infinite order; OPERATORS;
D O I
10.1090/spmj/1587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponential-polynomial basis is constructed in the space of all solutions of a homogeneous convolution equation in the Beurling spaces of ultradifferentiable functions of mean type on the real axis.
引用
收藏
页码:85 / 105
页数:21
相关论文
共 36 条
[31]   Estimates for Lusin-area and Littlewood-Paley gλ* functions over spaces of homogeneous type [J].
Meng, Yan ;
Nakai, Eiichi ;
Yang, Dachun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (05) :2721-2736
[32]   SINGULAR BEHAVIOR OF THE SOLUTION OF THE PERIODIC DIRICHLET HEAT EQUATION IN WEIGHTED Lp-SOBOLEV SPACES [J].
De Coster, Colette ;
Nicaise, Serge .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2011, 16 (3-4) :221-256
[33]   Solution of Fractional Differential Equation Systems and Computation of Matrix Mittag-Leffler Functions [J].
Duan, Junsheng ;
Chen, Lian .
SYMMETRY-BASEL, 2018, 10 (10)
[34]   CRITERIA OF A MULTI-WEIGHT WEAK TYPE INEQUALITY IN ORLICZ CLASSES FOR MAXIMAL FUNCTIONS DEFINED ON HOMOGENEOUS TYPE SPACES [J].
Ding, S. ;
Ren, Y. .
ACTA MATHEMATICA HUNGARICA, 2020, 162 (02) :677-689
[35]   CALDERON-HARDY SPACES WITH VARIABLE EXPONENTS AND THE SOLUTION OF THE EQUATION ΔmF = f FOR f ∈Hp(•)(Rn) [J].
Rocha, Pablo .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (03) :1013-1030
[36]   Numerical Solution for a Variable-Order Fractional Nonlinear Cable Equation via Chebyshev Cardinal Functions [J].
Irandoust-Pakchin, Safar ;
Abdi-Mazraeh, Somayeh ;
Khani, Ali .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (12) :2047-2056