GENERAL SOLUTION OF THE HOMOGENEOUS CONVOLUTION EQUATION IN SPACES OF ULTRADIFFERENTIABLE FUNCTIONS

被引:1
作者
Polyakova, D. A. [1 ,2 ]
机构
[1] Southern Fed Univ, Milchakov Str 8A, Rostov Na Donu 344090, Russia
[2] RAS, Vladikavkaz Sci Ctr, Southern Math Inst, Markus Str 22, Vladikavkaz 362027, Russia
关键词
Ultradifferentiable functions; convolution equation; differential equation of infinite order; OPERATORS;
D O I
10.1090/spmj/1587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An exponential-polynomial basis is constructed in the space of all solutions of a homogeneous convolution equation in the Beurling spaces of ultradifferentiable functions of mean type on the real axis.
引用
收藏
页码:85 / 105
页数:21
相关论文
共 36 条
[21]   GEVREY REGULARITY FOR SOLUTION OF THE SPATIALLY HOMOGENEOUS LANDAU EQUATION [J].
Chen Hua ;
Li Weixi ;
Xu Chaojiang .
ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) :673-686
[22]   HARDY SPACES ON HOMOGENEOUS GROUPS AND LITTLEWOOD-PALEY FUNCTIONS [J].
Sato, Shuichi .
QUARTERLY JOURNAL OF MATHEMATICS, 2020, 71 (01) :295-320
[23]   Convolution equations on spaces of quasi-nuclear functions of a given type and order [J].
Favaro, Vinicius V. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (03) :535-569
[24]   BMO-REGULARITY IN LATTICES OF MEASURABLE FUNCTIONS ON SPACES OF HOMOGENEOUS TYPE [J].
Rutsky, D. V. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (02) :381-412
[25]   Lipschitz-type conditions on homogeneous Banach spaces of analytic functions [J].
Blasco, Oscar ;
Stylogiannis, Georgios .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) :612-630
[26]   Extension of solutions of convolution equations in spaces of holomorphic functions with polynomial growth in convex domains [J].
Abanin, A. V. ;
Ishimura, R. ;
Khoi, Le Hai .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (01) :96-110
[27]   SOME EMBEDDINGS RELATED TO HOMOGENEOUS TRIEBEL-LIZORKIN SPACES AND THE BMO FUNCTIONS [J].
Gheribi, B. ;
Moussai, M. .
PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2024, 13 (02) :25-48
[28]   Harmonic analysis of functions in homogeneous spaces and harmonic distributions that are periodic or almost periodic at infinity [J].
Baskakov, A. G. ;
Strukov, V. E. ;
Strukova, I. I. .
SBORNIK MATHEMATICS, 2019, 210 (10) :1380-1427
[29]   Solution of the Dirichlet and Neumann problems for a modified Helmholtz equation in Besov spaces on an annulus [J].
Shahmurov, Rishad .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (03) :526-550
[30]   Solvability of inhomogeneous Cauchy–Riemann equation in spaces of functions with a system of uniform weight estimates [J].
Polyakova D.A. .
Russian Mathematics, 2015, 59 (10) :65-69