The Method of Lower and Upper Solutions for Sobolev Type Hilfer Fractional Evolution Equations

被引:0
作者
Gou, Hai -De [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
  Lower and upper solution; mild solutions; Hilfer fractional derivative; Measure of noncompactness; Monotone iterative technique; FINITE-ELEMENT-METHOD; CONTROLLABILITY; EXISTENCE;
D O I
10.2298/FIL2215983G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is concerned with the existence of extremal mild solutions for Sobolev type Hilfer fractional evolution equations with nonlocal conditions in an ordered Banach spaces E. By using monotone iterative technique coupled with the method of lower and upper solutions, with the help of the theory of propagation family as well as the theory of the measure of noncompactness and Sadovskii's fixed point theorem, we obtain some existence results of extremal mild solutions for Hilfer fractional evolution equations. Finally, an example is provided to show the feasibility of the theory discussed in this paper.
引用
收藏
页码:4983 / 5002
页数:20
相关论文
共 53 条
  • [1] Agarwal S., 2006, J Appl Math Stoch Anal, V1, P10
  • [2] Impulsive Hilfer fractional differential equations
    Ahmed, Hamdy M.
    El-Borai, Mahmoud M.
    El-Owaidy, Hassan M.
    Ghanem, Ahmed S.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [3] Hilfer fractional stochastic integro-differential equations
    Ahmed, Hamdy M.
    El-Borai, Mahmoud M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 331 : 182 - 189
  • [4] FEATURES OF SEEPAGE OF A LIQUID TO A CHINK IN THE CRACKED DEFORMABLE LAYER
    Aleroev, T. S.
    Aleroeva, H. T.
    Huang, Jianfei
    Nie, Ningming
    Tang, Yifa
    Zhang, Siyan
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2010, 1 (03) : 333 - 347
  • [5] On fractional impulsive equations of Sobolev type with nonlocal condition in Banach spaces
    Balachandran, K.
    Kiruthika, S.
    Trujillo, J. J.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1157 - 1165
  • [6] Balachandran K, 1998, KYBERNETIKA, V34, P349
  • [7] Balachandran K., COMPUTERS MATH
  • [8] Barenblatt G.E., 1960, J APPL MATH USSR, V24, P12861303, DOI [10.1016/0021-8928(60)90107-6, DOI 10.1016/0021-8928(60)90107-6]
  • [9] Finite element multigrid method for multi-term time fractional advection diffusion equations
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    Yang, Jiye
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)
  • [10] L1 scheme on graded mesh for the linearized time fractional KdV equation with initial singularity
    Chen, Hu
    Hu, Xiaohan
    Ren, Jincheng
    Sun, Tao
    Tang, Yifa
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (01)