Study of Sensitivity in Wind Direction Retrieval From Sentinel-1 Images

被引:0
|
作者
Tran Vu La [1 ]
Khenchaf, Ali [1 ]
Comblet, Fabrice [1 ]
Nahum, Carole [2 ]
机构
[1] ENSTA Bretagne, Lab STICC, UMR CNRS 6285, F-29200 Brest, France
[2] French Gen Directorate Armament DGA, F-92221 Bagneux, France
关键词
Wind direction retrieval; wind resolution cell; Local Gradient (LG); Sentinel-1; data;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Retrieval of sea wind vector from Synthetic Aperture Radar (SAR) data is one of the most widely used methods, since it can give high wind resolution cell. For this approach, wind direction is normally the first retrieved parameter, since it plays a crucial role in many inversion models (CMOD, XMOD) to estimate wind speed. In spite of the huge studies of wind field retrieval, little has been reported about the sensitivity of wind direction retrieval at different scales, especially at a wind resolution cell of 1 km x 1 km. This is particularly significant for C-band Sentinel-1 images which have generally high spatial resolutions. In order to investigate this issue, the Local Gradient method is selected to retrieve wind directions from the Sentinel-1 data at different scales, with regard to the spatial resolution (or acquisition mode) of SAR images, speckle noise, and wind regimes.
引用
收藏
页码:581 / 585
页数:5
相关论文
共 50 条
  • [41] Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods
    Tingting Qin
    Tong Jia
    Qian Feng
    Xiaoming Li
    ActaOceanologicaSinica, 2021, 40 (01) : 13 - 21
  • [42] Sentinel-1 Sensitivity to Soil Moisture at High Incidence Angle and the Impact on Retrieval Over Seasonal Crops
    Palmisano, Davide
    Mattia, Francesco
    Balenzano, Anna
    Satalino, Giuseppe
    Pierdicca, Nazzareno
    Guarnieri, Andrea Virgilio Monti
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7308 - 7321
  • [43] Sea surface wind speed retrieval from Sentinel-1 HH polarization data using conventional and neural network methods
    Tingting Qin
    Tong Jia
    Qian Feng
    Xiaoming Li
    Acta Oceanologica Sinica, 2021, 40 : 13 - 21
  • [44] Mass Processing of Sentinel-1 Images for Maritime Surveillance
    Santamaria, Carlos
    Alvarez, Marlene
    Greidanus, Harm
    Syrris, Vasileios
    Soille, Pierre
    Argentieri, Pietro
    REMOTE SENSING, 2017, 9 (07):
  • [45] The exploitation of Sentinel-1 images for vessel size estimation
    Stasolla, Mattia
    Greidanus, Harm
    REMOTE SENSING LETTERS, 2016, 7 (12) : 1219 - 1228
  • [46] SHIP CLASSIFICATION USING LAYOVER IN SENTINEL-1 IMAGES
    Al Hinai, Al Adil
    Guida, Raffaella
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7495 - 7498
  • [47] Sentinel-1 SAR Images of Inland Waterways Traffic
    Alexandrov, Chavdar
    Kolev, Nikolay
    Sivkov, Yordan
    Hristov, Avgustin
    Tsvetkov, Miroslav
    2018 20TH INTERNATIONAL SYMPOSIUM ON ELECTRICAL APPARATUS AND TECHNOLOGIES (SIELA), 2018,
  • [48] STUDY FLOOD REGIME USING HIGH TEMPORAL RESOLUTION SENTINEL-1 IMAGES
    Minh, D. Ho Tong
    El Moussawi, I
    Ngo, Y-N
    Baghdadi, N.
    Blatrix, R.
    McKey, D.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5085 - 5088
  • [49] Rain rate retrieval from Sentinel-1 synthetic aperture radar images during a tropical cyclone based on machine learning
    Hao, Mengyu
    Wei, Meng
    Shao, Weizeng
    Marino, Armando
    Jiang, Xingwei
    HYDROLOGICAL SCIENCES JOURNAL, 2025,
  • [50] A MODEL DRIVEN APPROACH FOR SNOW WETNESS RETRIEVAL WITH SENTINEL-1
    Marin, Carlo
    Callegari, Mattia
    Guenther, Daniel
    Bertoldi, Giacomo
    Marke, Thomas
    Strasser, Ulrich
    Bruzzone, Lorenzo
    Zebisch, Marc
    Notarnicola, Claudia
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 1886 - 1889