Acoustic spin-Chern insulator induced by synthetic spin-orbit coupling with spin conservation breaking

被引:72
作者
Deng, Weiyin [1 ]
Huang, Xueqin [1 ]
Lu, Jiuyang [1 ]
Peri, Valerio [2 ]
Li, Feng [1 ]
Huber, Sebastian D. [2 ]
Liu, Zhengyou [3 ,4 ,5 ]
机构
[1] South China Univ Technol, Sch Phys & Optoelect, Guangzhou 510640, Guangdong, Peoples R China
[2] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Peoples R China
[5] Wuhan Univ, Inst Adv Studies, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金; 欧洲研究理事会; 国家重点研发计划;
关键词
EDGE STATES; REALIZATION;
D O I
10.1038/s41467-020-17039-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Topologically protected surface modes of classical waves hold the promise to enable a variety of applications ranging from robust transport of energy to reliable information processing networks. However, both the route of implementing an analogue of the quantum Hall effect as well as the quantum spin Hall effect are obstructed for acoustics by the requirement of a magnetic field, or the presence of fermionic quantum statistics, respectively. Here, we construct a two-dimensional topological acoustic crystal induced by the synthetic spin-orbit coupling, a crucial ingredient of topological insulators, with spin non-conservation. Our setup allows us to free ourselves of symmetry constraints as we rely on the concept of a non-vanishing "spin" Chern number. We experimentally characterize the emerging boundary states which we show to be gapless and helical. More importantly, we observe the spin flipping transport in an H-shaped device, demonstrating evidently the spin non-conservation of the boundary states. In acoustic systems, quantum spin Hall physics is rarely observed because the crucial ingredient spin-orbit coupling is missing. Here, the authors construct an acoustic crystal with synthetic spin-orbit coupling and observe gapless helical boundary states as well as spin flipping effect.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Topological classification table implemented with classical passive metamaterials [J].
Barlas, Yafis ;
Prodan, Emil .
PHYSICAL REVIEW B, 2018, 98 (09)
[2]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[3]   Experimental realization of on-chip topological nanoelectromechanical metamaterials [J].
Cha, Jinwoong ;
Kim, Kun Woo ;
Daraio, Chiara .
NATURE, 2018, 564 (7735) :229-+
[4]   Effects of Random Domains on the Zero Hall Plateau in the Quantum Anomalous Hall Effect [J].
Chen, Chui-Zhen ;
Liu, Haiwen ;
Xie, X. C. .
PHYSICAL REVIEW LETTERS, 2019, 122 (02)
[5]   Experimental Demonstration of Acoustic Chern Insulators [J].
Ding, Yujiang ;
Peng, Yugui ;
Zhu, Yifan ;
Fan, Xudong ;
Yang, Jing ;
Liang, Bin ;
Zhu, Xuefeng ;
Wan, Xiangang ;
Cheng, Jianchun .
PHYSICAL REVIEW LETTERS, 2019, 122 (01)
[6]   High Spin-Chern Insulators with Magnetic Order [J].
Ezawa, Motohiko .
SCIENTIFIC REPORTS, 2013, 3
[7]   Valley-Polarized Metals and Quantum Anomalous Hall Effect in Silicene [J].
Ezawa, Motohiko .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[8]   Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator [J].
Fleury, Romain ;
Sounas, Dimitrios L. ;
Sieck, Caleb F. ;
Haberman, Michael R. ;
Alu, Andrea .
SCIENCE, 2014, 343 (6170) :516-519
[9]  
Hafezi M, 2013, NAT PHOTONICS, V7, P1001, DOI [10.1038/NPHOTON.2013.274, 10.1038/nphoton.2013.274]
[10]  
Hafezi M, 2011, NAT PHYS, V7, P907, DOI [10.1038/nphys2063, 10.1038/NPHYS2063]