Distinguishing Plasma Contributions to Catalyst Performance in Plasma-Assisted Ammonia Synthesis

被引:124
作者
Barboun, Patrick [1 ]
Mehta, Prateek [1 ]
Herrera, Francisco A. [2 ]
Go, David B. [1 ,2 ]
Schneider, William F. [1 ]
Hicks, Jason C. [1 ]
机构
[1] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Aerosp & Mech Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
N-2; reduction; Plasma catalysis; Plasma-catalyst interactions; Vibrationally excited species; fixation; BARRIER DISCHARGE REACTOR; LOW-TEMPERATURE; METHANE; DECOMPOSITION; CO2; HYDROGENATION; ACTIVATION; ELECTRODE; PRESSURE; ENERGY;
D O I
10.1021/acssuschemeng.9b00406
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasma-assisted catalysis is the process of electrically activating gases in the plasma-phase at low temperatures and ambient pressure to drive reactions on catalyst surfaces. Plasma-assisted catalytic processes combine conventional heterogeneous surface reactions, homogeneous plasma phase reactions, and coupling between plasma-generated species and the catalyst surface. Herein, we perform kinetically controlled ammonia synthesis measurements in a dielectric barrier discharge (DBD) plasma-assisted catalytic reactor. We decouple contributions due to plasma phase reactions from the overall plasma-assisted catalytic kinetics by performing plasma-only experiments. By varying the gas composition, temperature, and discharge power, we probe how macroscopic reaction conditions affect plasma-assisted ammonia synthesis on three different gamma-alumina-supported transition metal catalysts (Ru, Co, and Ni). Our experiments indicate that the overall reaction and plasma-phase reaction are first-order in both N-2 and H-2. In contrast, the rate contributions due to plasma-catalyst interactions are first-order in N-2 but zeroth order in H-2. Furthermore, we find that the tuning of the plasma discharge power is more effective in controlling catalytic performance than the increasing of bulk gas temperature in plasma-assisted ammonia synthesis. Finally, we show that adding a catalyst to the DBD reaction alters the way that productivity scales with the specific energy input (SEI).
引用
收藏
页码:8621 / 8630
页数:19
相关论文
共 52 条
[1]   Plasma-catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge [J].
Abd Allah, Zaenab ;
Whitehead, J. Christopher .
CATALYSIS TODAY, 2015, 256 :76-79
[2]   Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma [J].
Aihara, Keigo ;
Akiyama, Mao ;
Deguchi, Takashi ;
Tanaka, Masashi ;
Hagiwara, Rina ;
Iwamoto, Masakazu .
CHEMICAL COMMUNICATIONS, 2016, 52 (93) :13560-13563
[3]   Process Intensification in Ammonia Synthesis Using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma [J].
Akay, Galip ;
Zhang, Kui .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (02) :457-468
[4]   Plasma Technology: An Emerging Technology for Energy Storage [J].
Bogaerts, Annemie ;
Neyts, Erik C. .
ACS ENERGY LETTERS, 2018, 3 (04) :1013-1027
[5]   Dry reforming of methane via plasma-catalysis: influence of the catalyst nature supported on alumina in a packed-bed DBD configuration [J].
Brune, L. ;
Ozkan, A. ;
Genty, E. ;
de Bocarme, T. Visart ;
Reniers, F. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2018, 51 (23)
[6]   Plasma-catalyst interaction studied in a single pellet DBD reactor: dielectric constant effect on plasma dynamics [J].
Butterworth, T. ;
Allen, R. W. K. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (06)
[7]   Beyond fossil fuel-driven nitrogen transformations [J].
Chen, Jingguang G. ;
Crooks, Richard M. ;
Seefeldt, Lance C. ;
Bren, Kara L. ;
Bullock, R. Morris ;
Darensbourg, Marcetta Y. ;
Holland, Patrick L. ;
Hoffman, Brian ;
Janik, Michael J. ;
Jones, Anne K. ;
Kanatzidis, Mercouri G. ;
King, Paul ;
Lancaster, Kyle M. ;
Lymar, Sergei V. ;
Pfromm, Peter ;
Schneider, William F. ;
Schrock, Richard R. .
SCIENCE, 2018, 360 (6391)
[8]   Hydrogenation of carbon dioxide to methanol with a discharge-activated catalyst [J].
Eliasson, B ;
Kogelschatz, U ;
Xue, BZ ;
Zhou, LM .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1998, 37 (08) :3350-3357
[9]   Effects of Reactor Packing Materials on H2 Production by CO2 Reforming of CH4 in a Dielectric Barrier Discharge [J].
Gallon, Helen J. ;
Tu, Xin ;
Whitehead, J. Christopher .
PLASMA PROCESSES AND POLYMERS, 2012, 9 (01) :90-97
[10]   Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor [J].
Gomez-Ramirez, A. ;
Cotrino, J. ;
Lambert, R. M. ;
Gonzalez-Elipe, A. R. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (06)