13.6%-efficient Cu(In,Ga)Se2 solar cell with absorber fabricated by RF sputtering of (In,Ga)2Se3 and Cu Se targets

被引:22
作者
Zhu, X. L. [1 ]
Wang, Y. M. [1 ]
Zhou, Z. [1 ]
Li, A. M. [1 ]
Zhang, L. [1 ]
Huang, F. Q. [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, CAS Key Lab Mat Energy Convers, Shanghai 200050, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
关键词
Cu(In; Ga)Se-2; Selenide compound target; Sequential sputtering; Thin film solar cells; CUINSE2; THIN-FILMS; SELENIZATION; KINETICS; MOSE2;
D O I
10.1016/j.solmat.2013.02.001
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A conversion efficiency of 13.6% has been achieved in Cu(In,Ga)Se-2 (CIGS) thin film solar cell with absorber layer fabricated by sequentially RF sputtering (In,Ga)(2)Se-3 and CuSe targets and further annealing in Se vapor. The significant improvement, comparing with the efficiency of 10.8% for CIGS solar cell sputtering from a quaternary CIGS target, was attributed to smoother surface, better crystallinity, and more compact structure of the CIGS film. The reaction pathway of (In,Ga)(2)Se-3/CuSe bilayer was discussed, and such a bilayer design was demonstrated to be energetically favorable to form a better-crystallized CIGS film. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 143
页数:4
相关论文
共 50 条
  • [1] 10.3%-efficient submicron-thick Cu( In,Ga)Se2 solar cells with absorber fabricated by sputtering In2Se3, CuGaSe2 and Cu2Se targets
    Peng Xiao
    Zhao Ming
    Zhuang Daming
    Sun Rujun
    Zhang Leng
    Wei Yaowei
    Wu Yixuan
    Ren Guoan
    APPLIED SURFACE SCIENCE, 2018, 442 : 308 - 312
  • [2] Cu(In,Ga)Se2 films prepared by sputtering with a chalcopyrite Cu(In,Ga)Se2 quaternary alloy and In targets
    Lin, Y. C.
    Lin, Z. Q.
    Shen, C. H.
    Wang, L. Q.
    Ha, C. T.
    Peng, Chris
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2012, 23 (02) : 493 - 500
  • [3] Cu(In,Ga)Se2 thin films annealed with SnSe2 for solar cell absorber fabricated by magnetron sputtering
    Yan, Yong
    Guo, Tao
    Song, Xiaohui
    Yu, Zhou
    Jiang, Yurong
    Xia, Congxin
    SOLAR ENERGY, 2017, 155 : 601 - 607
  • [4] Remarkable enhancement of the efficiency of Cu(In,Ga)Se2 solar cells by annealing the (In,Ga)2Se3 precursor layer
    Gedi, Sreedevi
    Sun, Qian
    Jeon, Chan-Wook
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 659 : 255 - 261
  • [5] Characterization of Interface Between Accurately Controlled Cu-Deficient Layer and Cu(In,Ga)Se2 Absorber for Cu(In,Ga)Se2 Solar Cells
    Nishimura, Takahito
    Sugiura, Hiroki
    Nakada, Kazuyoshi
    Yamada, Akira
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2018, 12 (08):
  • [6] Properties of different temperature annealed Cu(In,Ga)Se2 and Cu(In,Ga)2Se3.5 films prepared by RF sputtering
    Yu, Zhou
    Liu, Lian
    Yan, Yong
    Zhang, Yanxia
    Li, Shasha
    Yan, Chuanpeng
    Zhang, Yong
    Zhao, Yong
    APPLIED SURFACE SCIENCE, 2012, 261 : 353 - 359
  • [7] Preparation of Cu(In,Ga)Se2 thin film by sputtering from Cu(In,Ga)Se2 quaternary target
    Liu, Jiang
    Zhuang, Daming
    Luan, Hexin
    Cao, Mingjie
    Xie, Min
    Li, Xiaolong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2013, 23 (02) : 133 - 138
  • [8] Effects of selenization parameters on growth characteristics of the Cu(In,Ga)Se2 films deposited by sputtering with a Cu-In-Ga, Cu-In-Ga2Se3, or Cu-Ga-In2Se3 target and a subsequent selenization procedure at 550-700°C
    Kuo, Dong-Hau
    Tu, Yung-Chin
    Monsefi, Mehrdad
    APPLIED SURFACE SCIENCE, 2013, 268 : 22 - 27
  • [9] 10.3% efficient Cu(In, Ga)Se2 solar cells fabricated by selenization of Cu-In-Ga precursors
    Hu, Junxia
    Cheng, Ke
    Han, Kaikai
    Kuang, Zhongcheng
    Liu, Jingling
    Hu, Binbin
    Tian, Qingwen
    Wu, Sixin
    Du, Zuliang
    MATERIALS LETTERS, 2016, 174 : 114 - 117
  • [10] Texture and morphology variations in (In,Ga)2Se3 and Cu(In,Ga)Se2 thin films grown with various Se source conditions
    Ishizuka, Shogo
    Yamada, Akimasa
    Fons, Paul
    Niki, Shigeru
    PROGRESS IN PHOTOVOLTAICS, 2013, 21 (04): : 544 - 553