Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions

被引:33
作者
Koltai, Hinanit [1 ]
机构
[1] Agr Res Org, Volcani Ctr, Inst Plant Sci, IL-50250 Bet Dagan, Israel
关键词
Strigolactones; root; phosphate; hormones; ethylene; auxin; root hairs; primary root; lateral root; SYSTEM ARCHITECTURE; BUD OUTGROWTH; ARABIDOPSIS; AUXIN; AVAILABILITY; ETHYLENE; BIOSYNTHESIS; DEFICIENCY; GERMINATION; INHIBITION;
D O I
10.1093/aob/mcs216
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Strigolactones (SLs) a group of plant hormones and their derivatives have been found to play a role in the regulation of root development, in addition to their role in suppression of lateral shoot branching: they alter root architecture and affect root-hair elongation, and SL signalling is necessary for the root response to low phosphate (Pi) conditions. These effects of SLs have been shown to be associated with differential activation of the auxin and ethylene signalling pathways. The present review highlights recent findings on the activity of SLs as regulators of root development, in particular in response to low Pi stress, and discusses the different hormonal networks putatively acting with SLs in the roots Pi response. SLs are suggested to be key regulators of the adaptive responses to low Pi in the root by modulating the balance between auxin and ethylene signalling. Consequently, they impact different developmental programmes responsible for the changes in root system architecture under differential Pi supply.
引用
收藏
页码:409 / 415
页数:7
相关论文
共 64 条
[1]   Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants [J].
Agusti, Javier ;
Herold, Silvia ;
Schwarz, Martina ;
Sanchez, Pablo ;
Ljung, Karin ;
Dun, Elizabeth A. ;
Brewer, Philip B. ;
Beveridge, Christine A. ;
Sieberer, Tobias ;
Sehr, Eva M. ;
Greb, Thomas .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (50) :20242-20247
[2]   The Path from β-Carotene to Carlactone, a Strigolactone-Like Plant Hormone [J].
Alder, Adrian ;
Jamil, Muhammad ;
Marzorati, Mattia ;
Bruno, Mark ;
Vermathen, Martina ;
Bigler, Peter ;
Ghisla, Sandro ;
Bouwmeester, Harro ;
Beyer, Peter ;
Al-Babili, Salim .
SCIENCE, 2012, 335 (6074) :1348-1351
[3]   d14, a Strigolactone-Insensitive Mutant of Rice, Shows an Accelerated Outgrowth of Tillers [J].
Arite, Tomotsugu ;
Umehara, Mikihisa ;
Ishikawa, Shinji ;
Hanada, Atsushi ;
Maekawa, Masahiko ;
Yamaguchi, Shinjiro ;
Kyozuka, Junko .
PLANT AND CELL PHYSIOLOGY, 2009, 50 (08) :1416-1424
[4]   Local, efflux-dependent auxin gradients as a common module for plant organ formation [J].
Benková, E ;
Michniewicz, M ;
Sauer, M ;
Teichmann, T ;
Seifertová, D ;
Jürgens, G ;
Friml, J .
CELL, 2003, 115 (05) :591-602
[5]   The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport [J].
Bennett, T ;
Sieberer, T ;
Willett, B ;
Booker, J ;
Luschnig, C ;
Leyser, O .
CURRENT BIOLOGY, 2006, 16 (06) :553-563
[6]   New genes in the strigolactone-related shoot branching pathway [J].
Beveridge, Christine Anne ;
Kyozuka, Junko .
CURRENT OPINION IN PLANT BIOLOGY, 2010, 13 (01) :34-39
[7]   PHOSPHATE POOLS, PHOSPHATE TRANSPORT, AND PHOSPHATE AVAILABILITY [J].
BIELESKI, RL .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1973, 24 :225-252
[8]   Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis [J].
Brewer, Philip B. ;
Dun, Elizabeth A. ;
Ferguson, Brett J. ;
Rameau, Catherine ;
Beveridge, Christine A. .
PLANT PHYSIOLOGY, 2009, 150 (01) :482-493
[9]   Functional biology of plant phosphate uptake at root and mycorrhiza interfaces [J].
Bucher, Marcel .
NEW PHYTOLOGIST, 2007, 173 (01) :11-26
[10]   Signaling Network in Sensing Phosphate Availability in Plants [J].
Chiou, Tzyy-Jen ;
Lin, Shu-I .
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 62, 2011, 62 :185-206