Direct Identification of Active Surface Species for the Water-Gas Shift Reaction on a Gold-Ceria Catalyst

被引:174
作者
Fu, Xin-Pu [1 ]
Gno, Li-Wen [1 ]
Wang, Wei-Wei [1 ]
Ma, Chao [3 ]
Jia, Chun-Jiang [1 ]
Wu, Ke [4 ]
Si, Rui [2 ]
Sun, Ling-Dong [4 ]
Yan, Chun-Hua [4 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Key Lab Special Aggregated Mat, Key Lab Colloid & Interface Chem, Jinan 250100, Shandong, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
[3] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[4] Peking Univ, PKU HKU Joint Lab Rare Earth Mat & Bioinorgan Che, State Key Lab Rare Earth Mat Chem & Applicat, Beijing Natl Lab Mol Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
SUPPORTED GOLD; CEO2; AU; SPECTROSCOPY; AU/CEO2; NANOPARTICLES; MECHANISM; OXIDATION; INTERFACE; REACTANT;
D O I
10.1021/jacs.8b09306
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The crucial role of the metal-oxide interface in the catalysts of the water-gas shift (WGS) reaction has been recognized, while the precise illustration of the intrinsic reaction at the interfacial site has scarcely been presented. Here, two kinds of gold-ceria catalysts with totally distinct gold species, <2 nm clusters and 3 to 4 nm particles, were synthesized as catalysts for the WGS reaction. We found that the gold cluster catalyst exhibited a superiority in reactivity compared to gold nanoparticles. With the aid of comprehensive in situ characterization techniques, the bridged -OH groups that formed on the surface oxygen vacancies of the ceria support are directly determined to be the sole active configuration among various surface hydroxyls in the gold-ceria catalysts. The isotopic tracing results further proved that the reaction between bridged surface -OH groups and CO molecules adsorbed on interfacial Au atoms contributes dominantly to the WGS reactivity. Thus, the abundant interfacial sites in gold clusters on the ceria surface induced superior reactivity compared to that of supported gold nanoparticles in catalyzing the WGS reaction. On the basis of direct and solid experimental evidence, we have obtained a very clear image of the surface reaction for the WGS reaction catalyzed by the gold-ceria catalyst.
引用
收藏
页码:4613 / 4623
页数:11
相关论文
共 42 条
[1]   Active Au Species During the Low-Temperature Water Gas Shift Reaction on Au/CeO2: A Time-Resolved Operando XAS and DRIFTS Study [J].
Abdel-Mageed, Ali M. ;
Kucerova, Gabriela ;
Bansmann, Joachim ;
Behm, R. Juergen .
ACS CATALYSIS, 2017, 7 (10) :6471-6484
[2]   Highly Active Ni/xNa/CeO2 Catalyst for the Water Gas Shift Reaction: Effect of Sodium on Methane Suppression [J].
Ang, M. L. ;
Oemar, U. ;
Saw, E. T. ;
Mo, L. ;
Kathiraser, Y. ;
Chia, B. H. ;
Kawi, S. .
ACS CATALYSIS, 2014, 4 (09) :3237-3248
[3]   Promotion of the Water-Gas-Shift Reaction by Nickel Hydroxyl Species in Partially Reduced Nickel-Containing Phyllosilicate Catalysts [J].
Ashok, Jangam ;
Li Ang, Ming ;
Terence, Puar Zhi Liang ;
Kawi, Sibudjing .
CHEMCATCHEM, 2016, 8 (07) :1308-1318
[4]   An FTIR study of surface ceria hydroxy groups during a redox process with H-2 [J].
Badri, A ;
Binet, C ;
Lavalley, JC .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1996, 92 (23) :4669-4673
[5]   IR study of polycrystalline ceria properties in oxidised and reduced states [J].
Binet, C ;
Daturi, M ;
Lavalley, JC .
CATALYSIS TODAY, 1999, 50 (02) :207-225
[6]   Reverse Water-Gas Shift on Interfacial Sites Formed by Deposition of Oxidized Molybdenum Moieties onto Gold Nanoparticles [J].
Carrasquillo-Flores, Ronald ;
Ro, Insoo ;
Kumbhalkar, Mrunmayi D. ;
Burt, Samuel ;
Carrero, Carlos A. ;
Alba-Rubio, Ana C. ;
Miller, Jeffrey T. ;
Hermans, Ive ;
Huber, George W. ;
Dumesic, James A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (32) :10317-10325
[7]   Size-Dependent Reaction Pathways of Low-Temperature CO Oxidation on Au/CeO2 Catalysts [J].
Chen, Shilong ;
Luo, Liangfeng ;
Jiang, Zhiquan ;
Huang, Weixin .
ACS CATALYSIS, 2015, 5 (03) :1653-1662
[8]   Support effect in high activity gold catalysts for CO oxidation [J].
Comotti, M ;
Li, WC ;
Spliethoff, B ;
Schüth, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (03) :917-924
[9]   Participation of interfacial hydroxyl groups in the water-gas shift reaction over Au/MgO catalysts [J].
Cui, Yanran ;
Li, Zhenglong ;
Zhao, Zhijian ;
Cybulskis, Viktor J. ;
Sabnis, Kaiwalya D. ;
Han, Chang Wan ;
Ortalan, Volkan ;
Schneider, William F. ;
Greeley, Jeffrey ;
Delgass, W. Nicholas ;
Ribeiro, Fabio H. .
CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (22) :5257-5266
[10]   Comparison of the activity of Au/CeO2 and Au/Fe2O3 catalysts for the CO oxidation and the water-gas shift reactions [J].
Deng, Weiling ;
Carpenter, Colin ;
Yi, Nan ;
Flytzani-Stephanopoulos, Maria .
TOPICS IN CATALYSIS, 2007, 44 (1-2) :199-208