Genome-wide Snapshot of Chromatin Regulators and States in Xenopus Embryos by ChIP-Seq

被引:6
|
作者
Gentsch, George E. [1 ]
Patrushev, Ilya [1 ]
Smith, James C. [1 ]
机构
[1] Natl Inst Med Res, MRC, Div Syst Biol, London, England
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2015年 / 96期
基金
英国医学研究理事会; 英国惠康基金;
关键词
Developmental Biology; Issue; 96; Chromatin immunoprecipitation; next-generation sequencing; ChIP-Seq; developmental biology; Xenopus embryos; cross-linking; transcription factor; post-sequencing analysis; DNA occupancy; metagene; binding motif; GO term; PROTEIN-DNA INTERACTIONS; GENE-REGULATION; INTERACTIONS INVIVO; RNA-POLYMERASE; IMMUNOPRECIPITATION; LAEVIS; VISUALIZATION; FORMALDEHYDE; EXPRESSION; TROPICALIS;
D O I
10.3791/52535
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The recruitment of chromatin regulators and the assignment of chromatin states to specific genomic loci are pivotal to cell fate decisions and tissue and organ formation during development. Determining the locations and levels of such chromatin features in vivo will provide valuable information about the spatio-temporal regulation of genomic elements, and will support aspirations to mimic embryonic tissue development in vitro. The most commonly used method for genome-wide and high-resolution profiling is chromatin immunoprecipitation followed by nextgeneration sequencing (ChIP-Seq). This protocol outlines how yolk-rich embryos such as those of the frog Xenopus can be processed for ChIP-Seq experiments, and it offers simple command lines for post-sequencing analysis. Because of the high efficiency with which the protocol extracts nuclei from formaldehyde-fixed tissue, the method allows easy upscaling to obtain enough ChIP material for genome-wide profiling. Our protocol has been used successfully to map various DNA-binding proteins such as transcription factors, signaling mediators, components of the transcription machinery, chromatin modifiers and post-translational histone modifications, and for this to be done at various stages of embryogenesis. Lastly, this protocol should be widely applicable to other model and non-model organisms as more and more genome assemblies become available.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] T-KDE: a method for genome-wide identification of constitutive protein binding sites from multiple ChIP-seq data sets
    Yuanyuan Li
    David M Umbach
    Leping Li
    BMC Genomics, 15
  • [42] Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state
    Rotem, Assaf
    Ram, Oren
    Shoresh, Noam
    Sperling, Ralph A.
    Goren, Alon
    Weitz, David A.
    Bernstein, Bradley E.
    NATURE BIOTECHNOLOGY, 2015, 33 (11) : 1165 - U91
  • [43] Chromatin analyses of Zymoseptoria tritici: Methods for chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq)
    Soyer, Jessica L.
    Moeller, Mareike
    Schotanus, Klaas
    Connolly, Lanelle R.
    Galazka, Jonathan M.
    Freitag, Michael
    Stukenbrock, Eva H.
    FUNGAL GENETICS AND BIOLOGY, 2015, 79 : 63 - 70
  • [44] Genome-wide, whole mount in situ analysis of transcriptional regulators in zebrafish embryos
    Armant, Olivier
    Maerz, Martin
    Schmidt, Rebecca
    Ferg, Marco
    Diotel, Nicolas
    Ertzer, Raymond
    Bryne, Jan Christian
    Yang, Lixin
    Baader, Isabelle
    Reischl, Markus
    Legradi, Jessica
    Mikut, Ralf
    Stemple, Derek
    van Ijcken, Wilfred
    van der Sloot, Antoine
    Lenhard, Boris
    Straehle, Uwe
    Rastegar, Sepand
    DEVELOPMENTAL BIOLOGY, 2013, 380 (02) : 351 - 362
  • [45] Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment
    Song, Lu
    Sun, Na
    Peng, Guangdun
    Chen, Jun
    Han, Jing-Dong Jackie
    Jing, Naihe
    GENOMICS DATA, 2015, 5 : 375 - 377
  • [46] Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation
    Pilon, Andre M.
    Ajay, Subramanian S.
    Kumar, Swathi Ashok
    Steiner, Laurie A.
    Cherukuri, Praveen F.
    Wincovitch, Stephen
    Anderson, Stacie M.
    Mullikin, James C.
    Gallagher, Patrick G.
    Hardison, Ross C.
    Margulies, Elliott H.
    Bodine, David M.
    BLOOD, 2011, 118 (17) : E139 - E148
  • [47] Genome-wide ChIP-seq analysis of human TOP2B occupancy in MCF7 breast cancer epithelial cells
    Manville, Catriona M.
    Smith, Kayleigh
    Sondka, Zbyslaw
    Rance, Holly
    Cockell, Simon
    Cowell, Ian G.
    Lee, Ka Cheong
    Morris, Nicholas J.
    Padget, Kay
    Jackson, Graham H.
    Austin, Caroline A.
    BIOLOGY OPEN, 2015, 4 (11): : 1436 - 1447
  • [48] The developmental epigenomics toolbox: ChIP-seq and MethylCap-seq profiling of early zebrafish embryos
    Bogdanovic, Ozren
    Fernandez-Minan, Ana
    Tena, Juan J.
    de la Calle-Mustienes, Elisa
    Luis Gomez-Skarmeta, Jose
    METHODS, 2013, 62 (03) : 207 - 215
  • [49] Fully automated high-throughput chromatin immunoprecipitation for ChIP-seq: Identifying ChIP-quality p300 monoclonal antibodies
    Gasper, William C.
    Marinov, Georgi K.
    Pauli-Behn, Florencia
    Scott, Max T.
    Newberry, Kimberly
    DeSalvo, Gilberto
    Ou, Susan
    Myers, Richard M.
    Vielmetter, Jost
    Wold, Barbara J.
    SCIENTIFIC REPORTS, 2014, 4
  • [50] Genome-wide identification of binding sites for NAC and YABBY transcription factors and co-regulated genes during soybean seedling development by ChIP-Seq and RNA-Seq
    Shamimuzzaman, Md
    Vodkin, Lila
    BMC GENOMICS, 2013, 14