The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements

被引:72
|
作者
Staton, S. Evan [2 ]
Bakken, Bradley H. [3 ]
Blackman, Benjamin K. [4 ]
Chapman, Mark A. [1 ]
Kane, Nolan C. [5 ,6 ]
Tang, Shunxue [7 ]
Ungerer, Mark C. [3 ]
Knapp, Steven J. [7 ]
Rieseberg, Loren H. [5 ,6 ]
Burke, John M. [1 ]
机构
[1] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA
[2] Univ Georgia, Dept Genet, Athens, GA 30602 USA
[3] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[4] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[5] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada
[6] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
[7] Univ Georgia, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA
来源
PLANT JOURNAL | 2012年 / 72卷 / 01期
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
transposable elements; chromodomain; Helianthus annuus; Asteraceae; LTR retrotransposon; genome evolution; RICE ORYZA-SATIVA; LTR-RETROTRANSPOSONS; TY3/GYPSY-LIKE RETROTRANSPOSONS; PHYLOGENETIC ANALYSIS; PROVIDES EVIDENCE; DNA-SEQUENCES; EVOLUTION; GENE; SIZE; RECOMBINATION;
D O I
10.1111/j.1365-313X.2012.05072.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (similar to 3.5 Gb) and the well-documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain-containing Gypsy LTR retrotransposons (chromoviruses), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [41] Cavitation fatigue and its reversal in sunflower (Helianthus annuus L.)
    Stiller, V
    Sperry, JS
    JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (371) : 1155 - 1161
  • [42] Viral diseases and viruses of sunflower (Helianthus annuus L.) -: a review
    Salamon, P
    NOVENYTERMELES, 2003, 52 (3-4): : 437 - 443
  • [43] Potential allelopathic effects of sunflower (Helianthus annuus L.) on microorganisms
    Kamal, Javed
    Bano, Asghari
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2008, 7 (22): : 4208 - 4211
  • [44] ALLELOCHEMICAL POTENTIAL OF SUNFLOWER (HELIANTHUS ANNUUS L.) IN WEEDS SUPPRESSION
    Sarbout, A. K.
    Sharhan, M. H.
    Salih, A. A.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2024, 56 (03): : 1244 - 1250
  • [45] In vitro pollination of isolated ovules of sunflower (Helianthus annuus L.)
    Popielarska, M
    ACTA BIOLOGICA CRACOVIENSIA SERIES BOTANICA, 2005, 47 (01) : 85 - 92
  • [46] Environmental effects on seed characteristics of sunflower (Helianthus annuus L.)
    Ahmad, S
    JOURNAL OF AGRONOMY AND CROP SCIENCE, 2001, 187 (03) : 213 - 216
  • [47] EFFICACY OF HERBICIDES AND THEIR TANK MIXTURES AT SUNFLOWER (Helianthus annuus L.)
    Delchev, Grozi
    SCIENTIFIC PAPERS-SERIES A-AGRONOMY, 2019, 62 (02): : 59 - 67
  • [48] Genetic variability for aluminium tolerance in sunflower (Helianthus annuus L.)
    Singh, Vivek Kumar
    Chander, Subhash
    Sheoran, Ram Kumar
    Anu
    Sheoran, Om Parkash
    Garcia-Oliveira, Ana Luisa
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2022, 58 (04) : 201 - 209
  • [49] Sunflower (Helianthus annuus L.) for production of silage of the entire plant
    Neumann, Mikael
    Oliboni, Rodrigo
    Oliveira, Marcos Rogerio
    Gorski, Suelen Cordova
    de Faria, Marcos Ventura
    Ueno, Robson Kyoshi
    Marafon, Fabiano
    APPLIED RESEARCH & AGROTECHNOLOGY, 2009, 2 (03): : 191 - 201
  • [50] Biochemical changes during regeneration of sunflower (Helianthus annuus L.).
    Laboratorio Biotecnologie, Istituto Agrario, Via Mach 1, I-38010 Sant Michele Adige , Italy
    ELECTROPHORESIS, 1 (191-197):