The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements

被引:72
|
作者
Staton, S. Evan [2 ]
Bakken, Bradley H. [3 ]
Blackman, Benjamin K. [4 ]
Chapman, Mark A. [1 ]
Kane, Nolan C. [5 ,6 ]
Tang, Shunxue [7 ]
Ungerer, Mark C. [3 ]
Knapp, Steven J. [7 ]
Rieseberg, Loren H. [5 ,6 ]
Burke, John M. [1 ]
机构
[1] Univ Georgia, Dept Plant Biol, Athens, GA 30602 USA
[2] Univ Georgia, Dept Genet, Athens, GA 30602 USA
[3] Kansas State Univ, Div Biol, Manhattan, KS 66506 USA
[4] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[5] Univ British Columbia, Biodivers Res Ctr, Vancouver, BC V6T 1Z4, Canada
[6] Univ British Columbia, Dept Bot, Vancouver, BC V6T 1Z4, Canada
[7] Univ Georgia, Inst Plant Breeding Genet & Genom, Athens, GA 30602 USA
来源
PLANT JOURNAL | 2012年 / 72卷 / 01期
基金
美国食品与农业研究所; 美国国家科学基金会;
关键词
transposable elements; chromodomain; Helianthus annuus; Asteraceae; LTR retrotransposon; genome evolution; RICE ORYZA-SATIVA; LTR-RETROTRANSPOSONS; TY3/GYPSY-LIKE RETROTRANSPOSONS; PHYLOGENETIC ANALYSIS; PROVIDES EVIDENCE; DNA-SEQUENCES; EVOLUTION; GENE; SIZE; RECOMBINATION;
D O I
10.1111/j.1365-313X.2012.05072.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Aside from polyploidy, transposable elements are the major drivers of genome size increases in plants. Thus, understanding the diversity and evolutionary dynamics of transposable elements in sunflower (Helianthus annuus L.), especially given its large genome size (similar to 3.5 Gb) and the well-documented cases of amplification of certain transposons within the genus, is of considerable importance for understanding the evolutionary history of this emerging model species. By analyzing approximately 25% of the sunflower genome from random sequence reads and assembled bacterial artificial chromosome (BAC) clones, we show that it is composed of over 81% transposable elements, 77% of which are long terminal repeat (LTR) retrotransposons. Moreover, the LTR retrotransposon fraction in BAC clones harboring genes is disproportionately composed of chromodomain-containing Gypsy LTR retrotransposons (chromoviruses), and the majority of the intact chromoviruses contain tandem chromodomain duplications. We show that there is a bias in the efficacy of homologous recombination in removing LTR retrotransposon DNA, thereby providing insight into the mechanisms associated with transposable element (TE) composition in the sunflower genome. We also show that the vast majority of observed LTR retrotransposon insertions have likely occurred since the origin of this species, providing further evidence that biased LTR retrotransposon activity has played a major role in shaping the chromatin and DNA landscape of the sunflower genome. Although our findings on LTR retrotransposon age and structure could be influenced by the selection of the BAC clones analyzed, a global analysis of random sequence reads indicates that the evolutionary patterns described herein apply to the sunflower genome as a whole.
引用
收藏
页码:142 / 153
页数:12
相关论文
共 50 条
  • [1] Genome-wide identification and characterization of exapted transposable elements in the large genome of sunflower (Helianthus annuus L.)
    Ventimiglia, Maria
    Marturano, Giovanni
    Vangelisti, Alberto
    Usai, Gabriele
    Simoni, Samuel
    Cavallini, Andrea
    Giordani, Tommaso
    Natali, Lucia
    Zuccolo, Andrea
    Mascagni, Flavia
    PLANT JOURNAL, 2023, 113 (04): : 734 - 748
  • [2] Accumulation of cadmium in three sunflower (Helianthus annuus L.) cultivars
    Zou, Jin
    Xu, Pu
    Lu, Xi
    Jiang, Wusheng
    Liu, Donghua
    PAKISTAN JOURNAL OF BOTANY, 2008, 40 (02) : 759 - 765
  • [3] Complete Mitochondrial Genome Sequence of Sunflower (Helianthus annuus L.)
    Grassa, Christopher J.
    Ebert, Daniel P.
    Kane, Nolan C.
    Rieseberg, Loren H.
    GENOME ANNOUNCEMENTS, 2016, 4 (05)
  • [4] The domestication of Helianthus annuus L. (sunflower)
    Bruce D. Smith
    Vegetation History and Archaeobotany, 2014, 23 : 57 - 74
  • [5] The domestication of Helianthus annuus L. (sunflower)
    Smith, Bruce D.
    VEGETATION HISTORY AND ARCHAEOBOTANY, 2014, 23 (01) : 57 - 74
  • [6] Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome
    Andrea Cavallini
    Lucia Natali
    Andrea Zuccolo
    Tommaso Giordani
    Irena Jurman
    Veronica Ferrillo
    Nicola Vitacolonna
    Vania Sarri
    Federica Cattonaro
    Marilena Ceccarelli
    Pier Giorgio Cionini
    Michele Morgante
    Theoretical and Applied Genetics, 2010, 120 : 491 - 508
  • [7] Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome
    Cavallini, Andrea
    Natali, Lucia
    Zuccolo, Andrea
    Giordani, Tommaso
    Jurman, Irena
    Ferrillo, Veronica
    Vitacolonna, Nicola
    Sarri, Vania
    Cattonaro, Federica
    Ceccarelli, Marilena
    Cionini, Pier Giorgio
    Morgante, Michele
    THEORETICAL AND APPLIED GENETICS, 2010, 120 (03) : 491 - 508
  • [8] DORMANCY IN SUNFLOWER (Helianthus annuus L.) ACHENES
    Andrade, A.
    Riera, N.
    Alemano, S.
    Vigliocco, A.
    BIOCELL, 2013, 37 (03) : A122 - A122
  • [9] MACRONUTRIENT UPTAKE OF SUNFLOWER (Helianthus annuus L.)
    Saes Zobiole, Luiz Henrique
    de Castro, Cesar
    de Oliveira, Fabio Alvares
    de Oliveira Junior, Adilson
    REVISTA BRASILEIRA DE CIENCIA DO SOLO, 2010, 34 (02): : 425 - 433
  • [10] YTTRIUM - ACCUMULATION, TRANSLOCATION AND DISTRIBUTION IN YOUNG SUNFLOWER PLANTS (Helianthus annuus L.)
    Maksimovic, Ivana
    Kastori, Rudolf
    Putnik-Delic, Marina
    Zeremski, Tijana
    FRESENIUS ENVIRONMENTAL BULLETIN, 2012, 21 (01): : 11 - 18