Modeling of diffusion through nanocomposite membranes

被引:20
作者
Liu, Q
De Kee, D [1 ]
机构
[1] Tulane Univ, Dept Chem & Biomol Engn, New Orleans, LA 70118 USA
[2] Tulane Univ, TIMES, New Orleans, LA 70118 USA
基金
美国国家航空航天局;
关键词
complex interface; non-Fickian diffusion; nanocomposite membrane;
D O I
10.1016/j.jnnfm.2005.08.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The diffusion process of a simple fluid through a complex polymer/clay nanocomposite membrane embedding a complex interface is modeled using the generalized bracket/General Equation for Non-Equilibrium Reversible and Irreversible Coupling (GENERIC) formalism. The complex interface is characterized, on a mesoscopic level of description, by a second-order area tensor A. A set of governing equations describing the time evolution of concentration, flux, internal structure (of the complex polymeric membrane) and area tensor is obtained. Four parameters appear in the governing equations. Two parameters characterize the importance of elasticity and mixing and the remaining two parameters account for the effects of the complex interface. An extension of Fick's second law, which includes the convective fluxes due to the change of polymer internal structure and complex interface, is derived for the flux evolution. The model describes the diffusion process quantitatively quite well. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 34 条
[1]   A constitutive model for the prediction of ellipsoidal droplet shapes and stresses in immiscible blends [J].
Almusallam, AS ;
Larson, RG ;
Solomon, MJ .
JOURNAL OF RHEOLOGY, 2000, 44 (05) :1055-1083
[2]   Modeling the phase behavior of polymer/clay nanocomposites [J].
Balazs, AC ;
Singh, C ;
Zhulina, E ;
Lyatskaya, Y .
ACCOUNTS OF CHEMICAL RESEARCH, 1999, 32 (08) :651-657
[3]   Modeling the interactions between polymers and clay surfaces through self-consistent field theory [J].
Balazs, AC ;
Singh, C ;
Zhulina, E .
MACROMOLECULES, 1998, 31 (23) :8370-8381
[4]  
BERIIS AN, 1994, THERMODYNAMICS FLOWI
[5]   Small molecule penetrant diffusion in aromatic polyesters: a molecular dynamics simulation study [J].
Bharadwaj, RK ;
Boyd, RH .
POLYMER, 1999, 40 (15) :4229-4236
[6]   Modeling the barrier properties of polymer-layered silicate nanocomposites [J].
Bharadwaj, RK .
MACROMOLECULES, 2001, 34 (26) :9189-9192
[7]   SYNTHESIS AND PROPERTIES OF NEW POLY(DIMETHYLSILOXANE) NANOCOMPOSITES [J].
BURNSIDE, SD ;
GIANNELIS, EP .
CHEMISTRY OF MATERIALS, 1995, 7 (09) :1597-1600
[8]  
DOI M, 1991, J CHEM PHYS, V95, P1242, DOI 10.1063/1.461156
[9]   Model for anomalous moisture diffusion through a polymer-clay nanocomposite [J].
Drozdov, AD ;
Christiansen, JD ;
Gupta, RK ;
Shah, AP .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2003, 41 (05) :476-492
[10]   A rheological model with constant approximate volume for immiscible blends of ellipsoidal droplets [J].
Edwards, BJ ;
Dressler, M .
RHEOLOGICA ACTA, 2003, 42 (04) :326-337