Silicate fertilizer application reduces soil greenhouse gas emissions in a Moso bamboo forest

被引:18
作者
Xu, Lin [1 ,2 ,3 ,4 ]
Deng, Xu [1 ,2 ,3 ,4 ]
Ying, Jiayang [1 ,2 ,3 ,4 ]
Zhou, Guomo [1 ,2 ,3 ,4 ]
Shi, Yongjun [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang A&F Univ, State Key Lab Subtrop Silviculture, Linan 311300, Zhejiang, Peoples R China
[2] Zhejiang A&F Univ, Zhejiang Prov Collaborat Innovat Ctr Bamboo Resou, Linan 311300, Zhejiang, Peoples R China
[3] Zhejiang A&F Univ, Key Lab Carbon Cycling Forest Ecosyst & Carbon Se, Linan 311300, Zhejiang, Peoples R China
[4] Zhejiang A&F Univ, Sch Environm & Resources Sci, Linan 311300, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; Moso bamboo forest; Silicate fertilizer; Greenhouse gas emissions; Mitigation measures; VEGETATION CARBON STOCKS; ORGANIC-CARBON; METHANE EMISSION; TEMPERATURE SENSITIVITY; CHEMICAL-COMPOSITION; COMMUNITY STRUCTURE; BIOCHAR APPLICATION; EXTRACTION METHOD; N2O EMISSIONS; MANAGEMENT;
D O I
10.1016/j.scitotenv.2020.141380
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Silicate fertilizer application in croplands is effective in mitigating soil methane (CH4) emissions and increasing rice yield. However, the effects of silicate fertilizer on soil greenhouse gas (GHG) emissions in Moso bamboo forests, and the underlying mechanisms are poorly understood. In the present study, a two-year field experiment was conducted to investigate the effect of silicate fertilizer rates (0 (CK), 0.225 and 1.125 Mg ha(-1)) on soil GHG emissions in a Moso bamboo forest. The results showed that silicate fertilizer application significantly reduced soil CO2 and N2O emissions, and increased soil CH4 uptakes. Compared to the CK treatments, the cumulative soil CO2 emission fluxes decreased by 29.6% and 32.5%, and the cumulative soil N2O emission fluxes decrease by 41.9% and 48.3%, the CH4 uptake fluxes increased by 13.5% and 32.4% in the 0.225 and 1.125 Mg ha(-1) treatments, respectively. The soil GHG emissions were significantly positively related to soil temperature (P < 0.05), but negatively related to soil moisture; however, this relationship was not observed between CH4 uptake fluxes and moisture in CK treatment. Soil CO2 emission and CH4 uptake were significantly positively related with water-soluble organic C (WSOC) and microbial biomass C (MBC) concentrations in all treatments (P < 0.05). Soil N2O emissions were significantly positively related to MBC, NH4+-N, NO3--N, and microbial biomass N (MBN) concentrations in all treatments (P < 0.05), but not with WSOC concentration. Structural equation modeling showed that application of silicate fertilizer directly reduced soil GHG emission by decreasing the labile C and N pools, and indirectly by influencing the soil physicochemical properties. Our findings suggest that silicate fertilizer can be an effective tool in combatting climate change by reducing soil GHG emissions in Moso bamboo forests. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:11
相关论文
共 63 条
[1]   Effect of silicate fertilizer on reducing methane emission during rice cultivation [J].
Ali, Muhammad Aslam ;
Lee, Chang Hoon ;
Kim, Pil Joo .
BIOLOGY AND FERTILITY OF SOILS, 2008, 44 (04) :597-604
[2]   Silicate fertilization in no-tillage rice farming for mitigation of methane emission and increasing rice productivity [J].
Ali, Muhammad Aslam ;
Lee, Chang Hoon ;
Lee, Yong Bok ;
Kim, Pil Joo .
AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2009, 132 (1-2) :16-22
[3]   Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils [J].
Alves, Bruno J. R. ;
Smith, Keith A. ;
Flores, Rilner A. ;
Cardoso, Abmael S. ;
Oliveira, William R. D. ;
Jantalia, Claudia P. ;
Urquiaga, Segundo ;
Boddey, Robert M. .
SOIL BIOLOGY & BIOCHEMISTRY, 2012, 46 :129-135
[4]  
[Anonymous], J ENVIRON QUAL
[5]  
[Anonymous], 2015, FOR RES CHIN 8 NAT F
[6]  
[Anonymous], 2009, SOIL FERTIL SCI CHIN
[7]   Farming with crops and rocks to address global climate, food and soil security [J].
Beerling, David J. ;
Leake, Jonathan R. ;
Long, Stephen P. ;
Scholes, Julie D. ;
Ton, Jurriaan ;
Nelson, Paul N. ;
Bird, Michael ;
Kantzas, Euripides ;
Taylor, Lyla L. ;
Sarkar, Binoy ;
Kelland, Mike ;
DeLucia, Evan ;
Kantola, Ilsa ;
Mueller, Christoph ;
Rau, Greg H. ;
Hansen, James .
NATURE PLANTS, 2018, 4 (03) :138-147
[8]   Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved [J].
Brassard, Patrick ;
Godbout, Stephane ;
Raghavan, Vijaya .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2016, 181 :484-497
[9]   DETERMINATION OF TOTAL, ORGANIC, AND AVAILABLE FORMS OF PHOSPHORUS IN SOILS [J].
BRAY, RH ;
KURTZ, LT .
SOIL SCIENCE, 1945, 59 (01) :39-45
[10]   CHLOROFORM FUMIGATION AND THE RELEASE OF SOIL-NITROGEN - A RAPID DIRECT EXTRACTION METHOD TO MEASURE MICROBIAL BIOMASS NITROGEN IN SOIL [J].
BROOKES, PC ;
LANDMAN, A ;
PRUDEN, G ;
JENKINSON, DS .
SOIL BIOLOGY & BIOCHEMISTRY, 1985, 17 (06) :837-842