Finite Groups with Seminormal Sylow Subgroups

被引:12
作者
Guo, Wen Bin [1 ,2 ]
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
finite groups; seminormal subgroups; Sylow subgroups; p-soluble groups; p-supersoluble groups;
D O I
10.1007/s10114-008-6563-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the following theorem: Let p be a prime number, P a Sylow p-subgroup of a group G and pi = pi(G) \ {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble group and P' <= O-p(G); 2) l(p)(G) <= 2 and l(pi)(G) <= 2; 3) if a pi-Hall subgroup of G is q-supersoluble for some q is an element of pi, then G is q-supersoluble.
引用
收藏
页码:1751 / 1757
页数:7
相关论文
共 50 条
  • [21] On Sylow subgroups of BCI groups
    Jin, Wei
    Liu, Weijun
    UTILITAS MATHEMATICA, 2011, 86 : 313 - 320
  • [22] On groups with formational subnormal Sylow subgroups
    Monakhov, Victor S.
    Sokhor, Irina L.
    JOURNAL OF GROUP THEORY, 2018, 21 (02) : 273 - 287
  • [23] Profinite groups with abelian Sylow subgroups
    Lopes, Lucas C.
    Shumyatsky, Pavel
    Zalesskii, Pavel A.
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (01) : 224 - 232
  • [24] Infinite groups with Sylow permutable subgroups
    Ballester-Bolinches, Adolfo
    Kurdachenko, Leonid A.
    Otal, Javier
    Pedraza, Tatiana
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2010, 189 (04) : 553 - 565
  • [25] Sylow 2-subgroups of the fixed point subgroup and the solvability of finite groups
    Jiang, Qinhui
    Chen, Zhaoying
    Li, Kefeng
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (04)
  • [26] Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups
    Goodwin, Simon M.
    Roehrle, Gerhard
    JOURNAL OF ALGEBRA, 2009, 321 (11) : 3321 - 3334
  • [27] THE SYLOW SUBGROUPS OF A FINITE REDUCTIVE GROUP
    Enguehard, Michel
    Michel, Jean
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2018, 13 (02): : 227 - 247
  • [28] The size of the largest conjugacy classes and the Sylow p-subgroups of finite groups
    Yong Yang
    Archiv der Mathematik, 2017, 108 : 9 - 16
  • [29] The size of the largest conjugacy classes and the Sylow p-subgroups of finite groups
    Yang, Yong
    ARCHIV DER MATHEMATIK, 2017, 108 (01) : 9 - 16
  • [30] Linear characters of Sylow subgroups of symmetric groups
    Giannelli, Eugenio
    Law, Stacey
    Long, Jason
    JOURNAL OF ALGEBRA, 2021, 584 : 125 - 160