Finite Groups with Seminormal Sylow Subgroups

被引:12
作者
Guo, Wen Bin [1 ,2 ]
机构
[1] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Peoples R China
关键词
finite groups; seminormal subgroups; Sylow subgroups; p-soluble groups; p-supersoluble groups;
D O I
10.1007/s10114-008-6563-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the following theorem: Let p be a prime number, P a Sylow p-subgroup of a group G and pi = pi(G) \ {p}. If P is seminormal in G, then the following statements hold: 1) G is a p-soluble group and P' <= O-p(G); 2) l(p)(G) <= 2 and l(pi)(G) <= 2; 3) if a pi-Hall subgroup of G is q-supersoluble for some q is an element of pi, then G is q-supersoluble.
引用
收藏
页码:1751 / 1757
页数:7
相关论文
共 12 条
[1]  
[Anonymous], SER PHIS MATH SCI
[2]  
[Anonymous], 1978, Formations of Finite Groups
[3]  
Gaschutz W., 1979, NOTES PURE MATH, V11
[4]  
GUO W, 2000, THEORY CLASSES GROUP
[5]   SUBGROUPS OF PRIME POWER INDEX IN A SIMPLE-GROUP [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1983, 81 (02) :304-311
[6]  
Huppert B., 1967, GRUNDLEHREN MATH WIS, V134
[7]  
Kegel O. H., 1961, ARCH MATH, V12, P90, DOI DOI 10.1007/BF01650529
[8]  
Lennox JC., 1987, Subnormal Subgroups of Groups
[9]  
Su, 1988, J MATH WUHAN, V8, P7
[10]  
WANG PC, 1990, ACTA MATH SINICA, V33, P480