INTEGRATION AND CELL DECOMPOSITION IN P-MINIMAL STRUCTURES

被引:6
|
作者
Kovacsics, Pablo Cubides [1 ]
Leenknegt, Eva [2 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, CNRS UMR 8524, F-59655 Villeneuve Dascq, France
[2] KULeuven, Dept Math, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
基金
欧洲研究理事会;
关键词
P-minimality; p-adic numbers; p-adic cell decomposition; constructible functions; function preparation; integration; rationality of Poincare series; FIELDS; SETS; VERSION;
D O I
10.1017/jsl.2015.38
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the class of L-constructible functions is closed under integration for any P-minimal expansion of a p-adic field (K, L). This generalizes results previously known for semi-algebraic and subanalytic structures. As part of the proof, we obtain a weak version of cell decomposition and function preparation for P-minimal structures, a result which is independent of the existence of Skolem functions. A direct corollary is that Denef's results on the rationality of Poincare series hold in any P-minimal expansion of a p-adic field (K, L).
引用
收藏
页码:1124 / 1141
页数:18
相关论文
共 50 条
  • [1] Clustered cell decomposition in P-minimal structures
    Chambille, Saskia
    Kovacsics, Pablo Cubides
    Leenknegt, Eva
    ANNALS OF PURE AND APPLIED LOGIC, 2017, 168 (11) : 2050 - 2086
  • [2] Cell decomposition for P-minimal fields
    Mourgues, Marie-Helene
    MATHEMATICAL LOGIC QUARTERLY, 2009, 55 (05) : 487 - 492
  • [3] TOPOLOGICAL CELL DECOMPOSITION AND DIMENSION THEORY IN P-MINIMAL FIELDS
    Kovacsics, Pablo Cubides
    Darniere, Luck
    Leenknegt, Eva
    JOURNAL OF SYMBOLIC LOGIC, 2017, 82 (01) : 347 - 358
  • [4] LOJASIEWICZ INEQUALITY IN P-MINIMAL STRUCTURES
    Srhir, Ahmed
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2021, 12 (04): : 16 - 24
  • [5] Exponential-constructible functions in P-minimal structures
    Chambille, Saskia
    Kovacsics, Pablo Cubides
    Leenknegt, Eva
    JOURNAL OF MATHEMATICAL LOGIC, 2020, 20 (02)
  • [6] DIFFERENTIATION IN P-MINIMAL STRUCTURES AND A p-ADIC LOCAL MONOTONICITY THEOREM
    Kuijpers, Tristan
    Leenknegt, Eva
    JOURNAL OF SYMBOLIC LOGIC, 2014, 79 (04) : 1133 - 1147
  • [7] ON p-UNIVERSAL AND p-MINIMAL NUMBERINGS
    Faizrahmanov, M. Kh.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (02) : 365 - 373
  • [8] External geometry of p-minimal surfaces
    Tkachev, VG
    GEOMETRY FROM THE PACIFIC RIM, 1997, : 363 - 375
  • [9] Presburger sets and p-minimal fields
    Cluckers, R
    JOURNAL OF SYMBOLIC LOGIC, 2003, 68 (01) : 153 - 162
  • [10] Definable completeness of P-minimal fields and applications
    Kovacsics, Pablo Cubides
    Delon, Francoise
    JOURNAL OF MATHEMATICAL LOGIC, 2022, 22 (02)