Positive integer powers of complex skew-symmetric circulant matrices

被引:5
作者
Gutierrez-Gutierrez, Jesus [1 ,2 ]
机构
[1] CEIT, E-20018 San Sebastian, Spain
[2] Univ Navarra, Tecnun, E-20018 San Sebastian, Spain
关键词
circulant matrices; eigenvalues; eigenvectors; Jordan's form; Chebyshev polynomials;
D O I
10.1016/j.amc.2008.03.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a general expression for the entries of the qth power (q is an element of N) of any complex skew-symmetric circulant matrix, in terms of the Chebyshev polynomials of the first and second kind. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:798 / 802
页数:5
相关论文
共 6 条
[1]  
Davis P.J., 1994, CIRCULANT MATRICES, Vsecond
[2]   On computing of arbitrary positive integer powers for one type of even order symmetric circulant matrices - II [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (01) :511-523
[3]   On computing of arbitrary positive integer powers for one type of even order symmetric circulant matrices - I [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) :86-90
[4]   On computing of arbitrary positive integer powers for one type of odd order symmetric circulant matrices - II [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) :1016-1027
[5]   On computing of arbitrary positive integer powers for one type of odd order symmetric circulant matrices-I [J].
Rimas, J .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (01) :137-141
[6]   A unifying approach to some old and new theorems on distribution and clustering [J].
Tyrtyshnikov, EE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1996, 232 :1-43