THE PROCRUSTES PROBLEM FOR ORTHOGONAL STIEFEL MATRICES

被引:18
作者
Bojanczyk, A. W. [1 ]
Lutoborski, A. [2 ]
机构
[1] Cornell Univ, Dept Elect Engn, Ithaca, NY 14853 USA
[2] Syracuse Univ, Dept Math, Syracuse, NY 13244 USA
关键词
Procrustes problem; Stiefel manifolds; projections on ellipsoids; relaxation methods;
D O I
10.1137/S106482759630992X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the Procrustes problem on the manifold of orthogonal Stiefel matrices. Given matrices A is an element of R-mxk; B is an element of R-mxp, m >= p >= k; we seek the minimum of parallel to A - BQ parallel to(2) for all matrices Q is an element of R-pxk; Q(T)Q = I-kxk. We introduce a class of relaxation methods for generating sequences of approximations to a minimizer and offer a geometric interpretation of these methods. Results of numerical experiments illustrating the convergence of the methods are given.
引用
收藏
页码:1291 / 1304
页数:14
相关论文
共 17 条