The Euclidean distance degree of Fermat hypersurfaces

被引:3
作者
Lee, Hwangrae [1 ]
机构
[1] Pohang Univ Sci & Technol, Dept Math, Pohang, South Korea
关键词
Euclidean distance degree; Fermat hypersurface; Optimization;
D O I
10.1016/j.jsc.2016.07.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Finding the point in an algebraic variety that is closest to a given point is an optimization problem with many applications. We study the case when the variety is a Fermat hypersurface. Our formula for its Euclidean distance degree is a piecewise polynomial whose pieces are defined by subtle congruence conditions. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:502 / 510
页数:9
相关论文
共 10 条
[1]  
Agostini D, 2015, J ALGEBR STUD, V6, P108
[2]  
Cox D., 1992, UNDERGRAD TEXTS MATH
[3]   The Euclidean Distance Degree of an Algebraic Variety [J].
Draisma, Jan ;
Horobet, Emil ;
Ottaviani, Giorgio ;
Sturmfels, Bernd ;
Thomas, Rekha R. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2016, 16 (01) :99-149
[4]  
Grayson D.R., 1992, Macaulay2, a software system for research in algebraic geometry
[5]   Likelihood Geometry [J].
Huh, June ;
Sturmfels, Bernd .
COMBINATORIAL ALGEBRAIC GEOMETRY, 2014, 2108 :63-117
[6]  
KHOVANSKII AG, 1980, DOKL AKAD NAUK SSSR+, V255, P804
[7]   EXPONENTIAL DIOPHANTINE EQUATIONS [J].
LAURENT, M .
INVENTIONES MATHEMATICAE, 1984, 78 (02) :299-327
[8]   ON LINEAR RELATIONS BETWEEN ROOTS OF UNITY [J].
MANN, HB .
MATHEMATIKA, 1965, 12 (24P2) :107-&
[9]   EXACT SOLUTIONS IN STRUCTURED LOW-RANK APPROXIMATION [J].
Ottaviani, Giorgio ;
Spaenlehauer, Pierre-Jean ;
Sturmfels, Bernd .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2014, 35 (04) :1521-1542
[10]   BETTI NUMBERS OF CONGRUENCE GROUPS [J].
SARNAK, P ;
ADAMS, S .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 88 (1-3) :31-72