High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction

被引:34
作者
Lee, Jae-Myung [1 ]
Kim, Taeyoung [1 ]
Baek, Seung-Wook [1 ]
Aihara, Yuichi [2 ]
Park, Youngsin [1 ]
Kim, Yong-Il [3 ]
Doo, Seok-Gwang [1 ]
机构
[1] Samsung Elect Co LTD, Samsung Adv Inst Technol, Samsung Ro 443803, Gyeonggi Do, South Korea
[2] Samsung Yokohama Res Inst, Osaka 5620036, Japan
[3] Korea Res Inst Stand & Sci, Taejon, South Korea
关键词
Lithium ion conductor; Garnet; Solid electrolyte; Magic angle spinning nuclear magnetic resonance; Rietveld refinement; Neutron powder diffraction; ELECTRODE MATERIALS; TRANSPORT-PROPERTIES; GARNETS; CONDUCTORS; AL; TEMPERATURE; TRANSITION; CONVERSION; BATTERIES; DISORDER;
D O I
10.1016/j.ssi.2014.01.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lithium ion conductor with the garnet-type structure, Li7La3Zr2O12 (LLZ), showing a high Li+ conductivity of 0.49 mS cm(-1) at 25 C, is synthesized via milling (500 rpm, 12 h) and following sintering at 1125 C for 20 h. The improved Li+ conductivity is attributed to the decrease of the particle size, the uniform distribution of particles before sintering, the high concentration of Li+ in the octahedral site (96h), and low occupancies of Li+ in the tetrahedral site (24d). Also, it is found that the cubic phase of LLZ is stabilized by a contamination of Al3+ ion into the LLZ lattice. The structural position of Al3+ is verified to be in the tetrahedral site (24d) by analyzing SEM images, MAS NMR, Pawley refinement using X-ray powder diffraction, and structural refinement using neutron powder diffraction data. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:13 / 17
页数:5
相关论文
共 38 条
[1]   Ion transport and phase transition in Li7-xLa3(Zr2-xMx)O12 (M = Ta5+, Nb5+, x=0, 0.25) [J].
Adams, Stefan ;
Rao, Rayavarapu Prasada .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (04) :1426-1434
[2]   Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 [J].
Allen, J. L. ;
Wolfenstine, J. ;
Rangasamy, E. ;
Sakamoto, J. .
JOURNAL OF POWER SOURCES, 2012, 206 :315-319
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Synthesis and crystallographic studies of garnet-related lithium-ion conductors Li6CaLa2Ta2O12 and Li6BaLa2Ta2O12 [J].
Awaka, Junji ;
Kijima, Norihito ;
Takahashi, Yasuhiko ;
Hayakawa, Hiroshi ;
Akimoto, Junji .
SOLID STATE IONICS, 2009, 180 (6-8) :602-606
[5]   Structure and dynamics of the fast lithium ion conductor "Li7La3Zr2O12" [J].
Buschmann, Henrik ;
Doelle, Janis ;
Berendts, Stefan ;
Kuhn, Alexander ;
Bottke, Patrick ;
Wilkening, Martin ;
Heitjans, Paul ;
Senyshyn, Anatoliy ;
Ehrenberg, Helmut ;
Lotnyk, Andriy ;
Duppel, Viola ;
Kienle, Lorenz ;
Janek, Juergen .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (43) :19378-19392
[6]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[7]   The structure of lithium garnets:: cation disorder and clustering in a new family of fast Li+ conductors [J].
Cussen, EJ .
CHEMICAL COMMUNICATIONS, 2006, (04) :412-413
[8]   Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4554-4569
[9]  
Garman R.M., 1996, SINTERING THEORY PRA, P144
[10]   Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor [J].
Geiger, Charles A. ;
Alekseev, Evgeny ;
Lazic, Biljana ;
Fisch, Martin ;
Armbruster, Thomas ;
Langner, Ramona ;
Fechtelkord, Michael ;
Kim, Namjun ;
Pettke, Thomas ;
Weppner, Werner .
INORGANIC CHEMISTRY, 2011, 50 (03) :1089-1097