Corrections to scaling in the critical theory of deconfined criticality

被引:42
|
作者
Bartosch, Lorenz [1 ,2 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 19期
关键词
DIMENSIONAL QUANTUM ANTIFERROMAGNETS; PHASE-TRANSITION; RENORMALIZATION-GROUP; CRITICAL FLUCTUATIONS; CRITICAL EXPONENTS; GROUND-STATES; SPIN-PEIERLS; VALENCE-BOND; SUPERCONDUCTORS; MODEL;
D O I
10.1103/PhysRevB.88.195140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Inspired by recent conflicting views on the order of the phase transition from an antiferromagnetic Neel state to a valence bond solid, we use the functional renormalization group to study the underlying quantum critical field theory which couples two complex matter fields to a noncompact gauge field. In our functional renormalization group approach, we only expand in covariant derivatives of the fields and use a truncation in which the full field dependence of all wave-function renormalization functions is kept. While we do find critical exponents which agree well with some quantum Monte Carlo studies and support the scenario of deconfined criticality, we also obtain an irrelevant eigenvalue of small magnitude, leading to strong corrections to scaling and slow convergence in related numerical studies.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Deconfined criticality and ghost Fermi surfaces at the onset of antiferromagnetism in a metal
    Zhang, Ya-Hui
    Sachdev, Subir
    PHYSICAL REVIEW B, 2020, 102 (15)
  • [42] Logarithmic corrections to scaling in critical percolation and random resistor networks
    Stenull, O
    Janssen, HK
    PHYSICAL REVIEW E, 2003, 68 (03):
  • [43] CRITICAL EXPONENTS AND CORRECTIONS TO SCALING FOR BOND TREES IN 2 DIMENSIONS
    ISHINABE, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (20): : 4419 - 4431
  • [44] Possibility of deconfined criticality in SU(N) Heisenberg models at small N
    Harada, Kenji
    Suzuki, Takafumi
    Okubo, Tsuyoshi
    Matsuo, Haruhiko
    Lou, Jie
    Watanabe, Hiroshi
    Todo, Synge
    Kawashima, Naoki
    PHYSICAL REVIEW B, 2013, 88 (22)
  • [45] Critical scaling in the theory of real fluids
    V. N. Bondarev
    The European Physical Journal B, 2010, 77 : 153 - 165
  • [46] Nonlinear sigma model description of deconfined quantum criticality in arbitrary dimensions
    Lu, Da-Chuan
    SCIPOST PHYSICS CORE, 2023, 6 (03):
  • [47] CRITICAL-POINT AND SCALING THEORY
    WIDOM, B
    PHYSICA, 1974, 73 (01): : 107 - 118
  • [48] Deconfined quantum criticality in the long-range, anisotropic Heisenberg chain
    Romen, Anton
    Birnkammer, Stefan
    Knap, Michael
    SCIPOST PHYSICS CORE, 2024, 7 (01):
  • [49] SCALING THEORY OF NONLINEAR CRITICAL RELAXATION
    FISHER, ME
    RACZ, Z
    PHYSICAL REVIEW B, 1976, 13 (11): : 5039 - 5041
  • [50] Critical scaling in the theory of real fluids
    Bondarev, V. N.
    EUROPEAN PHYSICAL JOURNAL B, 2010, 77 (02): : 153 - 165