Genome-wide identification of GRF gene family and their contribution to abiotic stress response in pitaya (Hylocereus polyrhizus)

被引:13
|
作者
Cai, Xiaowei [1 ]
Zhang, Lufang [1 ]
Xiao, Ling [1 ]
Wen, Zhuang [1 ]
Hou, Qiandong [1 ]
Yang, Kun [1 ]
机构
[1] Guizhou Univ, Key Lab Plant Resources Conservat & Germplasm Inn, Inst Agrobioengn, Minist Educ,Coll Life Sci, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Pitaya; Growth-regulating factor; Stress response; TRANSCRIPTION FACTORS; EXPRESSION ANALYSIS; REGULATORY MODULE; MICRORNA MIR396; LEAF GROWTH; ANNOTATION; COACTIVATOR; EVOLUTION; STRINGTIE; ALIGNMENT;
D O I
10.1016/j.ijbiomac.2022.10.284
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Growth-regulating factors (GRFs) are plant-specific transcription factors identified in many land plants. Recently, their indispensable roles in stress response are highlighted. In present work, 11 HpGRFs were cloned in pitaya. Segmental duplication is considered essential for the expansion of HpGRFs. A phylogenetic tree suggested that GRFs could be divided into eight categories, among which G-I was a Caryophyllales-specific one. The categorization was further evidenced by differences in the gene structure, collinearity, protein domain of HpGRFs. Five miR396 hairpins giving rise to two types of matured miR396s were identified in pitaya via sRNA-Seq in combination with bioinformatic analysis. Parallel analysis of RNA ends proved that HpGRFs except HpGRF5 were degraded by miR396-directed cleavages at the regions which code the conserved WRC motifs of HpGRFs. Multiple cis-regulatory elements were discovered in the promoters of HpGRFs. Among the elements, most are involved in stress and phytohormone response as well as plant growth, indicating a crosstalk between them. Expression analysis showed the responsive patterns of the miR396-GRF module under abiotic stresses. To conclude, our work systematically identified the miR396-targeted HpGRFs in pitaya and confirmed their involvement in stress response, providing novel insights into the comprehensive understanding of the stress resistance of pitaya.
引用
收藏
页码:618 / 635
页数:18
相关论文
共 50 条
  • [21] Genome-wide characterization of the GRF family and their roles in response to salt stress in Gossypium
    Cao, Jun-Feng
    Huang, Jin-Quan
    Liu, Xia
    Huang, Chao-Chen
    Zheng, Zi-Shou
    Zhang, Xiu-Fang
    Shangguan, Xiao-Xia
    Wang, Ling-Jian
    Zhang, Yu-Gao
    Wendel, Jonathan F.
    Grover, Corrinne E.
    Chen, Zhi-Wen
    BMC GENOMICS, 2020, 21 (01)
  • [22] Genome Wide Identification of the CIPK Gene Family and Its Response to Abiotic Stress in Banana
    Negi, Neelam Prabha
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2019, 55 : S63 - S63
  • [23] Genome-Wide Identification and Expression Analysis of Hexokinase Gene Family Under Abiotic Stress in Tomato
    Li, Jing
    Yao, Xiong
    Zhang, Jianling
    Li, Maoyu
    Xie, Qiaoli
    Yang, Yingwu
    Chen, Guoping
    Zhang, Xianwei
    Hu, Zongli
    PLANTS-BASEL, 2025, 14 (03):
  • [24] Genome-Wide Identification and Characterisation of Abiotic Stress Responsive mTERF Gene Family in Amaranthus hypochondriacus
    Hajyzadeh, Mortaza
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (05) : 1649 - 1664
  • [25] Genome-wide identification of oat TCP gene family and expression patterns under abiotic stress
    Nie, Jiaming
    Zhao, Hongbin
    Guo, Xiaodong
    Zhang, Tao
    Han, Bing
    Liu, Huiyan
    FRONTIERS IN GENETICS, 2025, 16
  • [26] Genome-wide identification and expression analysis of aquaporin gene family related to abiotic stress in watermelon
    Zhou, Yong
    Tao, Junjie
    Ahammed, Golam Jalal
    Li, Jingwen
    Yang, Youxin
    GENOME, 2019, 62 (10) : 643 - 656
  • [27] Genome-Wide Identification of WRKY Gene Family and Expression Analysis under Abiotic Stress in Barley
    Zheng, Junjun
    Zhang, Ziling
    Tong, Tao
    Fang, Yunxia
    Zhang, Xian
    Niu, Chunyu
    Li, Jia
    Wu, Yuhuan
    Xue, Dawei
    Zhang, Xiaoqin
    AGRONOMY-BASEL, 2021, 11 (03):
  • [28] Genome-wide analysis of the Universal stress protein A gene family in Vitis and expression in response to abiotic stress
    Cui, Xiaoyue
    Zhang, Pingying
    Hu, Yafan
    Chen, Chengcheng
    Liu, Qiying
    Guan, Pingyin
    Zhang, Jianxia
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 165 : 57 - 70
  • [29] Genome-wide identification, and characterization of the CDPK gene family reveal their involvement in abiotic stress response in Fragaria x ananassa
    Crizel, Rosane Lopes
    Perin, Ellen Cristina
    Vighi, Isabel Lopes
    Woloski, Rafael
    Seixas, Amilton
    Pinto, Luciano da Silva
    Rombaldi, Cesar Valmor
    Galli, Vanessa
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] Genome-wide identification and expression profiling of the WRKY gene family reveals abiotic stress response mechanisms in Platycodon grandiflorus
    Yu, Hanwen
    Li, Jing
    Chang, Xiangwei
    Dong, Nan
    Chen, Bowen
    Wang, Jutao
    Zha, Liangping
    Gui, Shuangying
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 257