Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries

被引:87
作者
He, Wei [1 ]
Tian, Huajun [1 ]
Xin, Fengxia [1 ]
Han, Weiqiang [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[2] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 200031, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-CAPACITY; CONDUCTIVE NETWORK; SILICON; CARBON; PARTICLES; NANOSTRUCTURES; COMPOSITES; ELECTRODES; NANOWIRES;
D O I
10.1039/c5ta04857e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Silicon has been perceived as one of the most promising anodes in the next generation lithium-ion batteries (LIBs) due to its superior theoretical capacity. However, bulk silicon experiences an enormous volume expansion during the lithiation/delithiation process, resulting in rapid capacity fading. And, its high-cost and low coulombic efficiency also present significant challenges for applications. Here, we presented a facile and large-scale approach for preparing micro-sized porous silicon by acid etching the abundant and inexpensive metallurgical Fe-Si alloy as a high-performance anode in LIBs. Profiting from the unique micro-sized structure, it exhibited a fantastic first-cycle coulombic efficiency of 88.1% and an excellent reversible capacity of 1250 mA h g(-1) at 500 mA g(-1) after 100 cycles. Furthermore, the micro-sized porous silicon without carbon coating could deliver a reversible capacity of 558 mA h g(-1) at a high current density of 5 A g(-1) due to the unique porous structure. This work provides a promising route for a large-scale production of high-performance micro-sized Si as anode materials in LIBs.
引用
收藏
页码:17956 / 17962
页数:7
相关论文
共 52 条
[1]   High energy density all-solid-state batteries: A challenging concept towards 3D integration [J].
Baggetto, Loic ;
Niessen, Rogier A. H. ;
Roozeboom, Fred ;
Notten, Peter H. L. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1057-1066
[2]   Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching [J].
Bang, Byoung Man ;
Kim, Hyunjung ;
Song, Hyun-Kon ;
Cho, Jaephil ;
Park, Soojin .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (12) :5013-5019
[3]   High capacity Li ion battery anodes using Ge nanowires [J].
Chan, Candace K. ;
Zhang, Xiao Feng ;
Cui, Yi .
NANO LETTERS, 2008, 8 (01) :307-309
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Direct plasma deposition of amorphous Si/C nanocomposites as high performance anodes for lithium ion batteries [J].
Chang, Xinghua ;
Li, Wei ;
Yang, Junfeng ;
Xu, Li ;
Zheng, Jie ;
Li, Xingguo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (07) :3522-3528
[6]   Hollow Carbon-Nanotube/Carbon-Nanofiber Hybrid Anodes for Li-Ion Batteries [J].
Chen, Yuming ;
Li, Xiaoyan ;
Park, Kyusung ;
Song, Jie ;
Hong, Jianhe ;
Zhou, Limin ;
Mai, Yiu-Wing ;
Huang, Haitao ;
Goodenough, John B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (44) :16280-16283
[7]   Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation [J].
Cho, Jeong-Hyun ;
Picraux, S. Tom .
NANO LETTERS, 2014, 14 (06) :3088-3095
[8]   Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability [J].
Du, Fei-Hu ;
Li, Bo ;
Fu, Wei ;
Xiong, Yi-Jun ;
Wang, Kai-Xue ;
Chen, Jie-Sheng .
ADVANCED MATERIALS, 2014, 26 (35) :6145-6150
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis [J].
Gao, Mingxia ;
Wang, Dingsheng ;
Zhang, Xuqing ;
Pan, Hongge ;
Liu, Yongfeng ;
Liang, Chu ;
Shang, Congxiao ;
Guo, Zhengxiao .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) :10767-10776