Validation of a Spatiotemporal Gait Model Using Inertial Measurement Units for Early-Stage Parkinson's Disease Detection During Turns

被引:9
作者
Yang, Yifan [1 ]
Chen, Lei [2 ]
Pang, Jun [3 ]
Huang, Xiayu [1 ]
Meng, Lin [3 ]
Ming, Dong [3 ,4 ]
机构
[1] Tianjin Univ, Tianjin Int Engn Inst, Tianjin, Peoples R China
[2] Tianjin Huanhu Hosp, Dept Neurol, Tianjin, Peoples R China
[3] Tianjin Univ, Acad Med Engn & Translat Med, Tianjin 300072, Peoples R China
[4] Tianjin Univ, Sch Precis Instrument & Optoelect Engn, Dept Biomed Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Gait; gait event detection; inertial measurement unit; straight walking; spatiotemporal gait parameter; stride length estimation; turning; Parkinson's disease; WALKING; FOOT; SUBTYPES;
D O I
10.1109/TBME.2022.3172725
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Current inertial-based models were mostly limited to gait assessment of straight walking, which may not be efficient for detecting subtle gait disorders at an early stage of Parkinson's disease (PD). As PD patients exhibit more severe gait impairments during turns even before the appearance of gait disorders, gait characteristics during turning can provide promise in the identification of early-stage PD. Methods: We proposed a novel spatiotemporal gait model using inertial measurement units that can assess gait performance in both straight walking and turning. Ten healthy young, ten healthy elderly subjects and ten early-stage PD patients were enrolled in the validation experiment. All participants performed a 7-meter walk test consisting of a straight walking path and turns at a self-selected speed. Spatiotemporal gait parameters from the proposed model were compared with the Vicon motion capture system. Results: A strong correlation of all spatiotemporal parameters (Pearson's R between 0.82 similar to 0.99) between the inertial-based model and the reference was observed. Most measurement differences were within the mean +/- 1.96 standard deviation lines. The absolute bias was below 6.21 ms for all temporal gait parameters, 2.19 cm for stride length and 0.02 m's for walking speed. We show that the proposed model does not only achieve a highly accurate and reliable spatiotemporal gait measurement but also enable the detection of significantly decreased stride length and reduced walking speed in early-stage PD patients at turns compared to the control groups. Significance: Our model offers a potential approach for early-stage PD detection.
引用
收藏
页码:3591 / 3600
页数:10
相关论文
共 42 条
[21]   Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors [J].
Nguyen, Hung P. ;
Ayachi, Fouaz ;
Lavigne-Pelletier, Catherine ;
Blamoutier, Margaux ;
Rahimi, Fariborz ;
Boissy, Patrick ;
Jog, Mandar ;
Duval, Christian .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2015, 12
[22]   Toward Real-Time Automated Detection of Turns during Gait Using Wearable Inertial Measurement Units [J].
Novak, Domen ;
Gorsic, Maja ;
Podobnik, Janez ;
Munih, Marko .
SENSORS, 2014, 14 (10) :18800-18822
[23]   Past, Present, and Future of Parkinson's Disease: A Special Essay on the 200th Anniversary of the Shaking Palsy [J].
Obeso, J. A. ;
Stamelou, M. ;
Goetz, C. G. ;
Poewe, W. ;
Lang, A. E. ;
Weintraub, D. ;
Burn, D. ;
Halliday, G. M. ;
Bezard, E. ;
Przedborski, S. ;
Lehericy, S. ;
Brooks, D. J. ;
Rothwell, J. C. ;
Hallett, M. ;
DeLong, M. R. ;
Marras, C. ;
Tanner, C. M. ;
Ross, G. W. ;
Langston, J. W. ;
Klein, C. ;
Bonifati, V. ;
Jankovic, J. ;
Lozano, A. M. ;
Deuschl, G. ;
Bergman, H. ;
Tolosa, E. ;
Rodriguez-Violante, M. ;
Fahn, S. ;
Postuma, R. B. ;
Berg, D. ;
Marek, K. ;
Standaert, D. G. ;
Surmeier, D. J. ;
Olanow, C. W. ;
Kordower, J. H. ;
Calabresi, P. ;
Schapira, A. H. V. ;
Stoessl, A. J. .
MOVEMENT DISORDERS, 2017, 32 (09) :1264-1310
[24]   Analysis of the performance of 17 algorithms from a systematic review: Influence of sensor position, analysed variable and computational approach in gait timing estimation from IMU measurements [J].
Panebianco, Giulia Pacini ;
Bisi, Maria Cristina ;
Stagni, Rita ;
Fantozzi, Silvia .
GAIT & POSTURE, 2018, 66 :76-82
[25]   Algorithm for Turning Detection and Analysis Validated under Home-Like Conditions in Patients with Parkinson's Disease and Older Adults using a 6 Degree-of-Freedom Inertial Measurement Unit at the Lower Back [J].
Pham, Minh H. ;
Elshehabi, Morad ;
Haertner, Linda ;
Heger, Tanja ;
Hobert, Markus A. ;
Faber, Gert S. ;
Salkovic, Dina ;
Ferreira, Joaquim J. ;
Berg, Daniela ;
Sanchez-Ferro, Alvaro ;
van Dieen, Jaap H. ;
Maetzler, Walter .
FRONTIERS IN NEUROLOGY, 2017, 8
[26]   Combining deep learning and model-based method using Bayesian Inference for walking speed estimation [J].
Qian, Yuyang ;
Yang, Kaiming ;
Zhu, Yu ;
Wang, Wei ;
Wan, Chenhui .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2020, 62
[27]   Turning Detection During Gait: Algorithm Validation and Influence of Sensor Location and Turning Characteristics in the Classification of Parkinson's Disease [J].
Rehman, Rana Zia Ur ;
Klocke, Philipp ;
Hryniv, Sofia ;
Galna, Brook ;
Rochester, Lynn ;
Del Din, Silvia ;
Alcock, Lisa .
SENSORS, 2020, 20 (18) :1-24
[28]   Wearable Inertial Measurement Units for Assessing Gait in Real-World Environments [J].
Renggli, David ;
Graf, Christina ;
Tachatos, Nikolaos ;
Singh, Navrag ;
Meboldt, Mirko ;
Taylor, William R. ;
Stieglitz, Lennart ;
Schmid Daners, Marianne .
FRONTIERS IN PHYSIOLOGY, 2020, 11
[29]   Assessment of Tremor Activity in the Parkinson's Disease Using a Set of Wearable Sensors [J].
Rigas, George ;
Tzallas, Alexandros T. ;
Tsipouras, Markos G. ;
Bougia, Panagiota ;
Tripoliti, Evanthia E. ;
Baga, Dina ;
Fotiadis, Dimitrios I. ;
Tsouli, Sofia G. ;
Konitsiotis, Spyridon .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (03) :478-487
[30]   Validation of IMU-based gait event detection during curved walking and turning in older adults and Parkinson's Disease patients [J].
Romijnders, Robbin ;
Warmerdam, Elke ;
Hansen, Clint ;
Welzel, Julius ;
Schmidt, Gerhard ;
Maetzler, Walter .
JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2021, 18 (01)