2D titanium carbide and transition metal oxides hybrid electrodes for Li-ion storage

被引:298
作者
Zhao, Meng-Qiang
Torelli, Michelle
Ren, Chang E.
Ghidiu, Michael
Ling, Zheng
Anasori, Babak
Barsoum, Michel W.
Gogotsi, Yury [1 ]
机构
[1] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
关键词
MXene; Transition metal oxide; Hybridization; Flexible film; Li-ion storage; HIGH VOLUMETRIC CAPACITANCE; PERFORMANCE ANODE MATERIALS; ENERGY-STORAGE; 2-DIMENSIONAL MATERIALS; BATTERIES; GRAPHENE; MXENE; SUPERCAPACITORS; CARBON; NANOCOMPOSITES;
D O I
10.1016/j.nanoen.2016.10.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The combination of nanomaterials with complementary properties in a well-designed architecture is an attractive strategy to develop multi-functional, high-performance materials for applications in energy conversion and storage, catalysis, electronic devices, and more. Herein, we propose three different methods: alternating filtration, spray coating, and in-situ wet chemistry synthesis, to achieve the hybridization of two-dimensional (2D) Ti3C2Tx MXene and transition metal oxides (TMOs), such as Co3O4 and NiCo2O4. The resulting flexible free-standing hybrid films were free of binders, conductive additives, or current collectors. When used directly as anodes for Li-ion batteries, these hybrid films successfully combined the metallic conductivity of Ti3C2Tx and high capacity of TMOs, showing excellent electrochemical performance for Li-ion storage. High reversible capacities over 1200 mA h g(-1) were achieved by the MXene/TMO hybrid film electrodes fabricated by all three methods. All films also exhibited impressive long cycling stabilities and excellent rate performances. In particular, the spray-coated Ti3C2Tx/NiCo2O4 hybrid film electrode achieved high reversible capacities of 1330, and 650 and 350 naA h g(-1) at 0.1, 5 and 10 C, respectively, along with no capacity decay over hundreds of cycles. This work demonstrates that the hybridization of MXenes, a large family of 2D transition metal carbides/nitrides, and TMOs has a significant potential for energy storage, and is promising for expansion into other applications.
引用
收藏
页码:603 / 613
页数:11
相关论文
共 61 条
[1]   Hierarchical Co-based Porous Layered Double Hydroxide Arrays Derived via Alkali Etching for High-performance Supercapacitors [J].
Abushrenta, Nasser ;
Wu, Xiaochao ;
Wang, Junnan ;
Liu, Junfeng ;
Sun, Xiaoming .
SCIENTIFIC REPORTS, 2015, 5
[2]   H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Hedhili, Mohamed N. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANOSCALE, 2016, 8 (14) :7580-7587
[3]   Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes) [J].
Anasori, Babak ;
Xie, Yu ;
Beidaghi, Majid ;
Lu, Jun ;
Hosler, Brian C. ;
Hultman, Lars ;
Kent, Paul R. C. ;
Gogotsi, Yury ;
Barsoum, Michel W. .
ACS NANO, 2015, 9 (10) :9507-9516
[4]   Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Rui, Xianhong ;
Yan, Qingyu ;
Kong, Jing ;
Zhang, Hua .
SMALL, 2013, 9 (20) :3433-3438
[5]   Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage [J].
Chen, Yu Ming ;
Yu, Le ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) :5990-5993
[6]   Light-Weight Free-Standing Carbon Nanotube-Silicon Films for Anodes of Lithium Ion Batteries [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Choi, Jang Wook ;
Cui, Yi .
ACS NANO, 2010, 4 (07) :3671-3678
[7]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[8]   SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries [J].
Cui, Lifeng ;
Shen, Jian ;
Cheng, Fangyi ;
Tao, Zhanliang ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2195-2201
[9]   Ultra Strong Silicon-Coated Carbon Nanotube Nonwoven Fabric as a Multifunctional Lithium-Ion Battery Anode [J].
Evanoff, Kara ;
Benson, Jim ;
Schauer, Mark ;
Kovalenko, Igor ;
Lashmore, David ;
Ready, W. Jud ;
Yushin, Gleb .
ACS NANO, 2012, 6 (11) :9837-9845
[10]   Citrate-Assisted Growth of NiCo2O4 Nanosheets on Reduced Graphene Oxide for Highly Reversible Lithium Storage [J].
Gao, Guoxin ;
Wu, Hao Bin ;
Lou, Xiong Wen .
ADVANCED ENERGY MATERIALS, 2014, 4 (14)